A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Overview

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition

The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition.
[paper] [supplemental material] [arXiv]

If you find our work or the codebase inspiring and useful to your research, please cite

@inproceedings{yuan2021DIN,
  title={Spatio-Temporal Dynamic Inference Network for Group Activity Recognition},
  author={Yuan, Hangjie and Ni, Dong and Wang, Mang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={7476--7485},
  year={2021}
}

Dependencies

  • Software Environment: Linux (CentOS 7)
  • Hardware Environment: NVIDIA TITAN RTX
  • Python 3.6
  • PyTorch 1.2.0, Torchvision 0.4.0
  • RoIAlign for Pytorch

Prepare Datasets

  1. Download publicly available datasets from following links: Volleyball dataset and Collective Activity dataset.
  2. Unzip the dataset file into data/volleyball or data/collective.
  3. Download the file tracks_normalized.pkl from cvlab-epfl/social-scene-understanding and put it into data/volleyball/videos

Using Docker

  1. Checkout repository and cd PROJECT_PATH

  2. Build the Docker container

docker build -t din_gar https://github.com/JacobYuan7/DIN_GAR.git#main
  1. Run the Docker container
docker run --shm-size=2G -v data/volleyball:/opt/DIN_GAR/data/volleyball -v result:/opt/DIN_GAR/result --rm -it din_gar
  • --shm-size=2G: To prevent ERROR: Unexpected bus error encountered in worker. This might be caused by insufficient shared memory (shm)., you have to extend the container's shared memory size. Alternatively: --ipc=host
  • -v data/volleyball:/opt/DIN_GAR/data/volleyball: Makes the host's folder data/volleyball available inside the container at /opt/DIN_GAR/data/volleyball
  • -v result:/opt/DIN_GAR/result: Makes the host's folder result available inside the container at /opt/DIN_GAR/result
  • -it & --rm: Starts the container with an interactive session (PROJECT_PATH is /opt/DIN_GAR) and removes the container after closing the session.
  • din_gar the name/tag of the image
  • optional: --gpus='"device=7"' restrict the GPU devices the container can access.

Get Started

  1. Train the Base Model: Fine-tune the base model for the dataset.

    # Volleyball dataset
    cd PROJECT_PATH 
    python scripts/train_volleyball_stage1.py
    
    # Collective Activity dataset
    cd PROJECT_PATH 
    python scripts/train_collective_stage1.py
  2. Train with the reasoning module: Append the reasoning modules onto the base model to get a reasoning model.

    1. Volleyball dataset

      • DIN

        python scripts/train_volleyball_stage2_dynamic.py
        
      • lite DIN
        We can run DIN in lite version by setting cfg.lite_dim = 128 in scripts/train_volleyball_stage2_dynamic.py.

        python scripts/train_volleyball_stage2_dynamic.py
        
      • ST-factorized DIN
        We can run ST-factorized DIN by setting cfg.ST_kernel_size = [(1,3),(3,1)] and cfg.hierarchical_inference = True.

        Note that if you set cfg.hierarchical_inference = False, cfg.ST_kernel_size = [(1,3),(3,1)] and cfg.num_DIN = 2, then multiple interaction fields run in parallel.

        python scripts/train_volleyball_stage2_dynamic.py
        

      Other model re-implemented by us according to their papers or publicly available codes:

      • AT
        python scripts/train_volleyball_stage2_at.py
        
      • PCTDM
        python scripts/train_volleyball_stage2_pctdm.py
        
      • SACRF
        python scripts/train_volleyball_stage2_sacrf_biute.py
        
      • ARG
        python scripts/train_volleyball_stage2_arg.py
        
      • HiGCIN
        python scripts/train_volleyball_stage2_higcin.py
        
    2. Collective Activity dataset

      • DIN
        python scripts/train_collective_stage2_dynamic.py
        
      • DIN lite
        We can run DIN in lite version by setting 'cfg.lite_dim = 128' in 'scripts/train_collective_stage2_dynamic.py'.
        python scripts/train_collective_stage2_dynamic.py
        

Another work done by us, solving GAR from the perspective of incorporating visual context, is also available.

@inproceedings{yuan2021visualcontext,
  title={Learning Visual Context for Group Activity Recognition},
  author={Yuan, Hangjie and Ni, Dong},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={35},
  number={4},
  pages={3261--3269},
  year={2021}
}
Owner
A Ph.D. candidate and a realistic idealist.
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022