CoaT: Co-Scale Conv-Attentional Image Transformers

Related tags

Deep LearningCoaT
Overview

CoaT: Co-Scale Conv-Attentional Image Transformers

Introduction

This repository contains the official code and pretrained models for CoaT: Co-Scale Conv-Attentional Image Transformers. It introduces (1) a co-scale mechanism to realize fine-to-coarse, coarse-to-fine and cross-scale attention modeling and (2) an efficient conv-attention module to realize relative position encoding in the factorized attention.

Model Accuracy

For more details, please refer to CoaT: Co-Scale Conv-Attentional Image Transformers by Weijian Xu*, Yifan Xu*, Tyler Chang, and Zhuowen Tu.

Changelog

04/23/2021: Pre-trained checkpoint for CoaT-Lite Mini is released.
04/22/2021: Code and pre-trained checkpoint for CoaT-Lite Tiny are released.

Usage

Environment Preparation

  1. Set up a new conda environment and activate it.

    # Create an environment with Python 3.8.
    conda create -n coat python==3.8
    conda activate coat
  2. Install required packages.

    # Install PyTorch 1.7.1 w/ CUDA 11.0.
    pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    
    # Install timm 0.3.2.
    pip install timm==0.3.2
    
    # Install einops.
    pip install einops

Code and Dataset Preparation

  1. Clone the repo.

    git clone https://github.com/mlpc-ucsd/CoaT
    cd CoaT
  2. Download ImageNet dataset (ILSVRC 2012) and extract.

    # Create dataset folder.
    mkdir -p ./data/ImageNet
    
    # Download the dataset (not shown here) and copy the files (assume the download path is in $DATASET_PATH).
    cp $DATASET_PATH/ILSVRC2012_img_train.tar $DATASET_PATH/ILSVRC2012_img_val.tar $DATASET_PATH/ILSVRC2012_devkit_t12.tar.gz ./data/ImageNet
    
    # Extract the dataset.
    python -c "from torchvision.datasets import ImageNet; ImageNet('./data/ImageNet', split='train')"
    python -c "from torchvision.datasets import ImageNet; ImageNet('./data/ImageNet', split='val')"
    # After the extraction, you should observe `train` and `val` folders under ./data/ImageNet.

Evaluate Pre-trained Checkpoint

We provide the CoaT checkpoints pre-trained on the ImageNet dataset.

Name [email protected] [email protected] #Params SHA-256 (first 8 chars) URL
CoaT-Lite Tiny 77.5 93.8 5.7M e88e96b0 model, log
CoaT-Lite Mini 79.1 94.5 11M 6b4a8ae5 model, log

The following commands provide an example (CoaT-Lite Tiny) to evaluate the pre-trained checkpoint.

# Download the pretrained checkpoint.
mkdir -p ./output/pretrained
wget http://vcl.ucsd.edu/coat/pretrained/coat_lite_tiny_e88e96b0.pth -P ./output/pretrained
sha256sum ./output/pretrained/coat_lite_tiny_e88e96b0.pth  # Make sure it matches the SHA-256 hash (first 8 characters) in the table.

# Evaluate.
# Usage: bash ./scripts/eval.sh [model name] [output folder] [checkpoint path]
bash ./scripts/eval.sh coat_lite_tiny coat_lite_tiny_pretrained ./output/pretrained/coat_lite_tiny_e88e96b0.pth
# It should output results similar to "[email protected] 77.504 [email protected] 93.814" at very last.

Train

The following commands provide an example (CoaT-Lite Tiny, 8-GPU) to train the CoaT model.

# Usage: bash ./scripts/train.sh [model name] [output folder]
bash ./scripts/train.sh coat_lite_tiny coat_lite_tiny

Evaluate

The following commands provide an example (CoaT-Lite Tiny) to evaluate the checkpoint after training.

# Usage: bash ./scripts/eval.sh [model name] [output folder] [checkpoint path]
bash ./scripts/eval.sh coat_lite_tiny coat_lite_tiny_eval ./output/coat_lite_tiny/checkpoints/checkpoint0299.pth

Citation

@misc{xu2021coscale,
      title={Co-Scale Conv-Attentional Image Transformers}, 
      author={Weijian Xu and Yifan Xu and Tyler Chang and Zhuowen Tu},
      year={2021},
      eprint={2104.06399},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

This repository is released under the Apache License 2.0. License can be found in LICENSE file.

Acknowledgment

Thanks to DeiT and pytorch-image-models for a clear and data-efficient implementation of ViT. Thanks to lucidrains' implementation of Lambda Networks and CPVT.

Owner
mlpc-ucsd
mlpc-ucsd
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022