Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

Overview

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022)

🔥 If DaGAN is helpful in your photos/projects, please help to it or recommend it to your friends. Thanks 🔥

[Paper]   [Project Page]   [Demo]   [Poster Video]

Fa-Ting Hong, Longhao Zhang, Li Shen, Dan Xu
The Hong Kong University of Science and Technology

Cartoon Sample

cartoon.mp4

Human Sample

celeb.mp4

Voxceleb1 Dataset

🚩 Updates

  • 🔥 🔥 May 19, 2022: The depth face model trained on Voxceleb2 is released! (The corresponding checkpoint of DaGAN will release soon). Click the LINK

  • 🔥 🔥 April 25, 2022: Integrated into Huggingface Spaces 🤗 using Gradio. Try out the web demo: Hugging Face Spaces (GPU version will come soon!)

  • 🔥 🔥 Add SPADE model, which produces more natural results.

🔧 Dependencies and Installation

Installation

We now provide a clean version of DaGAN, which does not require customized CUDA extensions.

  1. Clone repo

    git clone https://github.com/harlanhong/CVPR2022-DaGAN.git
    cd CVPR2022-DaGAN
  2. Install dependent packages

    pip install -r requirements.txt
    
    ## Install the Face Alignment lib
    cd face-alignment
    pip install -r requirements.txt
    python setup.py install

Quick Inference

We take the paper version for an example. More models can be found here.

YAML configs

See config/vox-adv-256.yaml to get description of each parameter.

Pre-trained checkpoint

The pre-trained checkpoint of face depth network and our DaGAN checkpoints can be found under following link: OneDrive.

Inference! To run a demo, download checkpoint and run the following command:

CUDA_VISIBLE_DEVICES=0 python demo.py  --config config/vox-adv-256.yaml --driving_video path/to/driving --source_image path/to/source --checkpoint path/to/checkpoint --relative --adapt_scale --kp_num 15 --generator DepthAwareGenerator 

The result will be stored in result.mp4. The driving videos and source images should be cropped before it can be used in our method. To obtain some semi-automatic crop suggestions you can use python crop-video.py --inp some_youtube_video.mp4. It will generate commands for crops using ffmpeg.

💻 Training

Datasets

  1. VoxCeleb. Please follow the instruction from https://github.com/AliaksandrSiarohin/video-preprocessing.

Train on VoxCeleb

To train a model on specific dataset run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_addr="0.0.0.0" --master_port=12348 run.py --config config/vox-adv-256.yaml --name DaGAN --rgbd --batchsize 12 --kp_num 15 --generator DepthAwareGenerator

The code will create a folder in the log directory (each run will create a new name-specific directory). Checkpoints will be saved to this folder. To check the loss values during training see log.txt. By default the batch size is tunned to run on 8 GeForce RTX 3090 gpu (You can obtain the best performance after about 150 epochs). You can change the batch size in the train_params in .yaml file.

🚩 Please use multiple GPUs to train your own model, if you use only one GPU, you would meet the inplace problem.

Also, you can watch the training loss by running the following command:

tensorboard --logdir log/DaGAN/log

When you kill your process for some reasons in the middle of training, a zombie process may occur, you can kill it using our provided tool:

python kill_port.py PORT

Training on your own dataset

  1. Resize all the videos to the same size e.g 256x256, the videos can be in '.gif', '.mp4' or folder with images. We recommend the later, for each video make a separate folder with all the frames in '.png' format. This format is loss-less, and it has better i/o performance.

  2. Create a folder data/dataset_name with 2 subfolders train and test, put training videos in the train and testing in the test.

  3. Create a config config/dataset_name.yaml, in dataset_params specify the root dir the root_dir: data/dataset_name. Also adjust the number of epoch in train_params.

📜 Acknowledgement

Our DaGAN implementation is inspired by FOMM. We appreciate the authors of FOMM for making their codes available to public.

📜 BibTeX

@inproceedings{hong2022depth,
            title={Depth-Aware Generative Adversarial Network for Talking Head Video Generation},
            author={Hong, Fa-Ting and Zhang, Longhao and Shen, Li and Xu, Dan},
            journal={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
            year={2022}
          }

📧 Contact

If you have any question, please email [email protected].

YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022