Ranger deep learning optimizer rewrite to use newest components

Related tags

Deep LearningRanger21
Overview

Ranger21 - integrating the latest deep learning components into a single optimizer

Ranger deep learning optimizer rewrite to use newest components

Ranger, with Radam + Lookahead core, is now approaching two years old.
*Original publication, Aug 2019: New deep learning optimizer Ranger
In the interim, a number of new developments have happened including the rise of Transformers for Vision.

Thus, Ranger21 (as in 2021) is a rewrite with multiple new additions reflective of some of the most impressive papers this past year. The focus for Ranger21 is that these internals will be parameterized, and where possible, automated, so that you can easily test and leverage some of the newest concepts in AI training, to optimize the optimizer on your respective dataset.

Latest Simple Benchmark comparison (Image classification, dog breed subset of ImageNet, ResNet-18):

Ranger 21:
Accuracy: 74.02% Validation Loss: 15.00

Adam:
Accuracy: 64.84% Validation Loss: 17.19

Net results: 14.15% greater accuracy with Ranger21 vs Adam, same training epochs.

Ranger21 Status:

April 27 PM - Ranger21 now training on ImageNet! Starting work on benchmarking Ranger21 on ImageNet. Due to cost, will train to 40 epochs on ImageNet and compare with same setup with 40 epochs using Adam to have a basic "gold standard" comparison. Training is underway now, hope to have results end of this week.

April 26 PM - added smarter auto warmup based on Dickson Neoh report (tested with only 5 epochs), and first pip install setup thanks to @BrianPugh!
The warmup structure for Ranger21 is based on the paper by Ma/Yarats which uses the beta2 param to compute the default warmup. However, that also assumes we have a longer training run. @DNH on the fastai forums tested with 5 epochs which meant it never got past warmup phase.
Thus have added a check for the % warmup relative to the total training time and will auto fall back to 30% (settable via warmup_pct_default) in order to account for shorter training runs.

  • First pip install for Ranger21, thanks to @BrianPugh! In the next week or two will be focusing on making Ranger21 easier to install and use vs adding new optimizer features and thanks to @BrianPugh we've already underway with a basic pip install.
git clone https://github.com/lessw2020/Ranger21.git
cd Ranger21
python -m pip install -e .
```

or directly installed from github:

```
python -m pip install git+https://github.com/lessw2020/Ranger21.git

April 25 PM - added guard for potential key error issue Update checked in to add additional guard to prevent a key error reported earlier today during lookahead step. This should correct, but since unable to repro locally, please update to latest code and raise an issue if you encounter this. Thanks!

April 25 - Fixed warmdown calculation error, moved to Linear warmdown, new high in benchmark: Found that there was an error in the warmdown calculations. Fixed and also moved to linear warmdown. This resulted in another new high for the simple benchmark, with results now moved to above so they don't get lost in the updates section.
Note that the warmdown now calculates based on the decay between the full lr, to the minimal lr (defaults to 3e-5), rather than previously declining to 0.

Note that you can display the lr curves directly by simply using:

lr_curve = optimizer.tracking_lr
plt.plot(lr_curve)

Ranger21 internally tracks the lr per epoch for this type of review. Additional updates include adding a 'clear_cache' to reset the cached lookahead params, and also moved the lookahead procesing to it's own function and cleaned up some naming conventions. Will use item_active=True/False rather than the prior using_item=True/False to keep the code simpler as now item properties are alpha grouped vs being cluttered into the using_item layout.
April 24 - New record on benchmark with NormLoss, Lookahead, PosNeg momo, Stable decay etc. all combined NormLoss and Lookahead integrated into Ranger21 set a new high on our simple benchmark (ResNet 18, subset of ImageWoof).
Best Accuracy = 73.41 Best Val Loss = 15.06

For comparison, using plain Adam on this benchmark:
Adam Only Accuracy = 64.84 Best Adam Val Loss = 17.19

In otherwords, 12.5%+ higher accuracy atm for same training epochs by using Ranger21 vs Adam.

Basically it shows that the integration of all these various new techniques is paying off, as currently combining them delivers better than any of them + Adam.

New code checked in - adds Lookahead and of course Norm Loss. Also the settings is now callable via .show_settings() as an easy way to check settings.
Ranger21_424_settings

Given that the extensive settings may become overwhelming, planning to create config file support to make it easy to save out settings for various architectures and ideally have a 'best settings' recipe for CNN, Transformer for Image/Video, GAN, etc.

April 23 - Norm Loss will be added, initial benchmarking in progress for several features A new soft regularizer, norm loss, was recently published in this paper on Arxiv: https://arxiv.org/abs/2103.06583v1

It's in the spirit of weight decay, but approaches it in a unique manner by nudging the weights towards the oblique manifold..this means unlike weight decay, it can actually push smaller weights up towards the norm 1 property vs weight decay only pushes down. Their paper also shows norm less is less sensitive to hyperparams such as batch size, etc. unlike regular weight decay.

One of the lead authors was kind enough to share their TF implemention, and have reworked it into PyTorch form and integrated into Ranger21. Initial testing set a new high for validation loss on my very basic benchmark. Thus, norm loss will be available with the next code update.

Also did some initial benchmarking to set vanilla Adam as a baseline, and ablation style testing with pos negative momentum. Pos neg momo alone is a big improvement over vanilla Adam, and looking forward to mapping out the contributions and synergies between all of the new features being rolled into Ranger21 including norm loss, adapt gradient clipping, gc, etc.

April 18 PM - Adaptive gradient clipping added, thanks for suggestion and code from @kayuksel. AGC is used in NFNets to replace BN. For our use case here, it's to have a smarter gradient clipping algo vs the usual hard clipping, and ideally better stabilize training.

Here's how the Ranger21 settings output looks atm: ranger21_settings

April 18 AM - chebyshev fractals added, cosine warmdown (cosine decay) added
Chebyshev performed reasonably well, but still needs more work before recommending so it's defaulting to off atm. There are two papers providing support for using Chebyshev, one of which is: https://arxiv.org/abs/2010.13335v1
Cosine warmdown has been added so that the default lr schedule for Ranger21 is linear warmup, flat run at provided lr, and then cosine decay of lr starting at the X% passed in. (Default is .65).

April 17 - building benchmark dataset(s) As a cost effective way of testing Ranger21 and it's various options, currently taking a subset of ImageNet categories and building out at the high level an "ImageSubNet50" and also a few sub category datasets. These are similar in spirit to ImageNette and ImageWoof, but hope to make a few relative improvements including pre-sizing to 224x224 for speed of training/testing. First sub-dataset in progress in ImageBirds, which includes:
n01614925 bald eagle
n01616318 vulture
n01622779 grey owl

n01806143 peacock
n01833805 hummingbird

This is a medium-fine classification problem and will use as first tests for this type of benchmarking. Ideally, will make a seperate repo for the ImageBirds shortly to make it available for people to use though hosting the dataset poses a cost problem...

April 12 - positive negative momentum added, madgrad core checked in Testing over the weekend showed that positive negative momentum works really well, and even better with GC.
Code is a bit messy atm b/c also tested Adaiw, but did not do that well so removed and added pos negative momentum. Pos Neg momentum is a new technique to add parameter based, anisotropic noise to the gradient which helps it settle into flatter minima and also escape saddle points. In other words, better results.
Link to their excellent paper: https://arxiv.org/abs/2103.17182

You can toggle between madgrad or not with the use_madgrad = True/False flag: ranger21_use_madgrad_toggle

April 10 - madgrad core engine integrated Madgrad has been added in a way that you will be able to select to use MadGrad or Adam as the core 'engine' for the optimizer.
Thus, you'll be able to simply toggle which opt engine to use, as well as the various enhancements (warmup, stable weight decay, gradient_centralization) and thus quickly find the best optimization setup for your specific dataset.

Still testing things and then will update code here... Gradient centralization good for both - first findings are gradient centralization definitely improves MadGrad (just like it does with Adam core) so will have GC on as default for both engines.

madgrad_added_ranger21

LR selection is very different between MadGrad and Adam core engine:

One item - the starting lr for madgrad is very different (typically higher) than with Adam....have done some testing with automated LR scheduling (HyperExplorer and ABEL), but that will be added later if it's successful. But if you simply plug your usual Adam LR's into Madgrad you won't be impressed :)

Note that AdamP projection was also tested as an option, but impact was minimal, so will not be adding it atm.

April 6 - Ranger21 alpha ready - automatic warmup added. Seeing impressive results with only 3 features implemented.
Stable weight decay + GC + automated linear warmup seem to sync very nicely. Thus if you are feeling adventorous, Ranger21 is basically alpha usable. Recommend you use the default warmup (automatic by default), but test lr and weight decay.
Ranger21 will output the settings at init to make it clear what you are running with: Ranger21_initialization

April 5 - stable weight decay added. Quick testing shows nice results with 1e-4 weight decay on subset of ImageNet.

Current feature set planned:

1 - feature complete - automated, Linear and Exponential warmup in place of RAdam. This is based on the findings of https://arxiv.org/abs/1910.04209v3

2 - Feature in progress - MadGrad core engine . This is based on my own testing with Vision Transformers as well as the compelling MadGrad paper: https://arxiv.org/abs/2101.11075v1

3 - feature complete - Stable Weight Decay instead of AdamW style or Adam style: needs more testing but the paper is very compelling: https://arxiv.org/abs/2011.11152v3

4 - feature complete - Gradient Centralization will be continued - as always, you can turn it on or off. https://arxiv.org/abs/2004.01461v2

5 - Lookahead may be brought forward - unclear how much it may help with the new MadGrad core, which already leverages dual averaging, but will probably include as a testable param.

6 - Feature implementation in progress - dual optimization engines - Will have Adam and Madgrad core present as well so that one could quickly test with both Madgrad and Adam (or AdamP) with the flip of a param.

If you have ideas/feedback, feel free to open an issue.

Installation

Until this is up on pypi, this can either be installed via cloning the package:

git clone https://github.com/lessw2020/Ranger21.git
cd Ranger21
python -m pip install -e .

or directly installed from github:

python -m pip install git+https://github.com/lessw2020/Ranger21.git
Owner
Less Wright
Principal Software Engineer at Audere PM/Test/Dev at Microsoft Software Architect at X10 Wireless
Less Wright
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022