Temporal-Relational CrossTransformers

Related tags

Deep Learningtrx
Overview

Temporal-Relational Cross-Transformers (TRX)

This repo contains code for the method introduced in the paper:

Temporal-Relational CrossTransformers for Few-Shot Action Recognition

We provide two ways to use this method. The first is to incorporate it into your own few-shot video framework to allow direct comparisons against your method using the same codebase. This is recommended, as everyone has different systems, data storage etc. The second is a full train/test framework, which you will need to modify to suit your system.

Use within your own few-shot framework (recommended)

TRX_CNN in model.py contains a TRX with multiple cardinalities (i.e. pairs, triples etc.) and a ResNet backbone. It takes in support set videos, support set labels and query videos. It outputs the distances from each query video to each of the query-specific support set prototypes which are used as logits. Feed this into the loss from utils.py. An example of how it is constructed with the required arguments, and how it is called (with input dimensions etc.) is in main in model.py

You can use it with ResNet18 with 84x84 resolution on one GPU, but we recommend distributing the CNN over multiple GPUs so you can use ResNet50, 224x224 and 5 query videos per class. How you do this will depend on your system, but the function distribute shows how we do it.

Use episodic training. That is, construct a random task from the training dataset like e.g. MAML, prototypical nets etc.. Average gradients and backpropogate once every 16 training tasks. You can look at the rest of the code for an example of how this is done.

Use with our framework

It includes the training and testing process, data loader, logging and so on. It's fairly system specific, in particular the data loader, so it is recommended that you use within your own framework (see above).

Download your chosen dataset, and extract frames to be of the form dataset/class/video/frame-number.jpg (8 digits, zero-padded). To prepare your data, zip the dataset folder with no compression. We did this as our filesystem has a large block size and limited number of individual files, which means one large zip file has to be stored in RAM. If you don't have this limitation (hopefully you won't because it's annoying) then you may prefer to use a different data loading process.

Put your desired splits (we used https://github.com/ffmpbgrnn/CMN for Kinetics and SSv2) in text files. These should be called trainlistXX.txt and testlistXX.txt. XX is a 0-padded number, e.g. 01. You can have separate text files for evaluating on the validation set, e.g. trainlist01.txt/testlist01.txt to train on the train set and evaluate on the the test set, and trainlist02.txt/testlist02.txt to train on the train set and evaluate on the validation set. The number is passed as a command line argument.

Modify the distribute function in model.py. We have 4 x 11GB GPUs, so we split the ResNets over the 4 GPUs and leave the cross-transformer part on GPU 0. The ResNets are always split evenly across all GPUs specified, so you might have to split the cross-transformer part, or have the cross-transformer part on its own GPU.

Modify the command line parser in run.py so it has the correct paths and filenames for the dataset zip and split text files.

Acknowledgements

We based our code on CNAPs (logging, training, evaluation etc.). We use torch_videovision for video transforms. We took inspiration from the image-based CrossTransformer and the Temporal-Relational Network.

Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
A simple editor for captions in .SRT file extension

WaySRT A simple editor for captions in .SRT file extension The program doesn't use any external dependecies, just run: python way_srt.py {file_name.sr

Gustavo Lopes 3 Nov 16, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023