Temporal-Relational CrossTransformers

Related tags

Deep Learningtrx
Overview

Temporal-Relational Cross-Transformers (TRX)

This repo contains code for the method introduced in the paper:

Temporal-Relational CrossTransformers for Few-Shot Action Recognition

We provide two ways to use this method. The first is to incorporate it into your own few-shot video framework to allow direct comparisons against your method using the same codebase. This is recommended, as everyone has different systems, data storage etc. The second is a full train/test framework, which you will need to modify to suit your system.

Use within your own few-shot framework (recommended)

TRX_CNN in model.py contains a TRX with multiple cardinalities (i.e. pairs, triples etc.) and a ResNet backbone. It takes in support set videos, support set labels and query videos. It outputs the distances from each query video to each of the query-specific support set prototypes which are used as logits. Feed this into the loss from utils.py. An example of how it is constructed with the required arguments, and how it is called (with input dimensions etc.) is in main in model.py

You can use it with ResNet18 with 84x84 resolution on one GPU, but we recommend distributing the CNN over multiple GPUs so you can use ResNet50, 224x224 and 5 query videos per class. How you do this will depend on your system, but the function distribute shows how we do it.

Use episodic training. That is, construct a random task from the training dataset like e.g. MAML, prototypical nets etc.. Average gradients and backpropogate once every 16 training tasks. You can look at the rest of the code for an example of how this is done.

Use with our framework

It includes the training and testing process, data loader, logging and so on. It's fairly system specific, in particular the data loader, so it is recommended that you use within your own framework (see above).

Download your chosen dataset, and extract frames to be of the form dataset/class/video/frame-number.jpg (8 digits, zero-padded). To prepare your data, zip the dataset folder with no compression. We did this as our filesystem has a large block size and limited number of individual files, which means one large zip file has to be stored in RAM. If you don't have this limitation (hopefully you won't because it's annoying) then you may prefer to use a different data loading process.

Put your desired splits (we used https://github.com/ffmpbgrnn/CMN for Kinetics and SSv2) in text files. These should be called trainlistXX.txt and testlistXX.txt. XX is a 0-padded number, e.g. 01. You can have separate text files for evaluating on the validation set, e.g. trainlist01.txt/testlist01.txt to train on the train set and evaluate on the the test set, and trainlist02.txt/testlist02.txt to train on the train set and evaluate on the validation set. The number is passed as a command line argument.

Modify the distribute function in model.py. We have 4 x 11GB GPUs, so we split the ResNets over the 4 GPUs and leave the cross-transformer part on GPU 0. The ResNets are always split evenly across all GPUs specified, so you might have to split the cross-transformer part, or have the cross-transformer part on its own GPU.

Modify the command line parser in run.py so it has the correct paths and filenames for the dataset zip and split text files.

Acknowledgements

We based our code on CNAPs (logging, training, evaluation etc.). We use torch_videovision for video transforms. We took inspiration from the image-based CrossTransformer and the Temporal-Relational Network.

Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023