YouRefIt: Embodied Reference Understanding with Language and Gesture

Overview

YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture

by Yixin Chen, Qing Li, Deqian Kong, Yik Lun Kei, Tao Gao, Yixin Zhu, Song-Chun Zhu and Siyuan Huang

The IEEE International Conference on Computer Vision (ICCV), 2021

Introduction

We study the machine's understanding of embodied reference: One agent uses both language and gesture to refer to an object to another agent in a shared physical environment. To tackle this problem, we introduce YouRefIt, a new crowd-sourced, real-world dataset of embodied reference.

For more details, please refer to our paper.

Checklist

  • Image ERU
  • Video ERU

Installation

The code was tested with the following environment: Ubuntu 18.04/20.04, python 3.7/3.8, pytorch 1.9.1. Run

    git clone https://github.com/yixchen/YouRefIt_ERU
    pip install -r requirements.txt

Dataset

Download the YouRefIt dataset from Dataset Request Page and put under ./ln_data

Model weights

  • Yolov3: download the pretrained model and place the file in ./saved_models by
    sh saved_models/yolov3_weights.sh
    
  • More pretrained models are availble Google drive, and should also be placed in ./saved_models.

Make sure to put the files in the following structure:

|-- ROOT
|	|-- ln_data
|		|-- yourefit
|			|-- images
|			|-- paf
|			|-- saliency
|	|-- saved_modeks
|		|-- final_model_full.tar
|		|-- final_resc.tar

Training

Train the model, run the code under main folder.

python train.py --data_root ./ln_data/ --dataset yourefit --gpu gpu_id 

Evaluation

Evaluate the model, run the code under main folder. Using flag --test to access test mode.

python train.py --data_root ./ln_data/ --dataset yourefit --gpu gpu_id \
 --resume saved_models/model.pth.tar \
 --test

Evaluate Image ERU on our released model

Evaluate our full model with PAF and saliency feature, run

python train.py --data_root ./ln_data/ --dataset yourefit  --gpu gpu_id \
 --resume saved_models/final_model_full.tar --use_paf --use_sal --large --test

Evaluate baseline model that only takes images as input, run

python train.py --data_root ./ln_data/ --dataset yourefit  --gpu gpu_id \
 --resume saved_models/final_resc.tar --large --test

Evalute the inference results on test set on different IOU levels by changing the path accordingly,

 python evaluate_results.py

Citation

@inProceedings{chen2021yourefit,
 title={YouRefIt: Embodied Reference Understanding with Language and Gesture},
 author = {Chen, Yixin and Li, Qing and Kong, Deqian and Kei, Yik Lun and Zhu, Song-Chun and Gao, Tao and Zhu, Yixin and Huang, Siyuan},
 booktitle={The IEEE International Conference on Computer Vision (ICCV),
 year={2021}
 }    

Acknowledgement

Our code is built on ReSC and we thank the authors for their hard work.

[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 01, 2023
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022