Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

Related tags

Deep Learningxlm-t
Overview

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter.

XLM-T - A Multilingual Language Model Toolkit for Twitter

As explained in the reference paper, we make start from XLM-Roberta base and continue pre-training on a large corpus of Twitter in multiple languages. This masked language model, which we named twitter-xlm-roberta-base in the 🤗 Huggingface hub, can be downloaded from here.

Note: This Twitter-specific pretrained LM was pretrained following a similar strategy to its English-only counterpart, which was introduced as part of the TweetEval framework, and available here.

We also provide task-specific models based on the Adapter technique, fine-tuned for cross-lingual sentiment analysis (See #2):

1 - Code

We include code with various functionalities to complement this release. We provide examples for, among others, feature extraction and adapter-based inference with language models in this notebook. Also with examples for training and evaluating language models on multiple tweet classification tasks, compatible with UMSAB (see #2) and TweetEval datasets.

Perform inference with Huggingface's pipelines

Using Huggingface's pipelines, obtaining predictions is as easy as:

from transformers import pipeline
model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("Huggingface es lo mejor! Awesome library 🤗😎")
[{'label': 'Positive', 'score': 0.9343640804290771}]

Fine-tune xlm-t with adapters

You can fine-tune an adapter built on top of your language model of choice by running the src/adapter_finetuning.py script, for example:

python3 src/adapter_finetuning.py --language spanish --model cardfiffnlp/twitter-xlm-roberta-base --seed 1 --lr 0.0001 --max_epochs 20

Notebooks

For quick prototyping, you can direclty use the Colab notebooks we provide below:

Notebook Description Colab Link
01: Playgroud examples Minimal start examples Open In Colab
02: Extract embeddings Extract embeddings from tweets Open In Colab
03: Sentiment prediction Predict sentiment Open In Colab
04: Fine-tuning Fine-tune a model on custom data Open In Colab

2 - UMSAB, the Unified Multilingual Sentiment Analysis Benchmark

As part of our framework, we also release a unified benchmark for cross-lingual sentiment analysis for eight different languages. All datasets are framed as tweet classification with three labels (positive, negative and neutral). The languages included in the benchmark, as well as the datasets they are based on, are: Arabic (SemEval-2017, Rosenthal et al. 2017), English (SemEval-17, Rosenthal et al. 2017), French (Deft-2017, Benamara et al. 2017), German (SB-10K, Cieliebak et al. 2017), Hindi (SAIL 2015, Patra et al. 2015), Italian (Sentipolc-2016, Barbieri et al. 2016), Portuguese (SentiBR, Brum and Nunes, 2017) and Spanish (Intertass 2017, Díaz Galiano et al. 2018). The format for each dataset follows that of TweetEval with one line per tweet and label per line.

UMSAB Results / Leaderboard

The following results (Macro F1 reported) correspond to XLM-R (Conneau et al. 2020) and XLM-Tw, the same model retrained on Twitter as explained in the reference paper. The two settings are monolingual (trained and tested in the same language) and multilingual (considering all languages for training). Check the reference paper for more details on the setting and the metrics.

FT Mono XLM-R Mono XLM-Tw Mono XLM-R Multi XLM-Tw Multi
Arabic 46.0 63.6 67.7 64.3 66.9
English 50.9 68.2 66.9 68.5 70.6
French 54.8 72.0 68.2 70.5 71.2
German 59.6 73.6 76.1 72.8 77.3
Hindi 37.1 36.6 40.3 53.4 56.4
Italian 54.7 71.5 70.9 68.6 69.1
Portuguese 55.1 67.1 76.0 69.8 75.4
Spanish 50.1 65.9 68.5 66.0 67.9
All lang. 51.0 64.8 66.8 66.8 69.4

If you would like to have your results added to the leaderboard you can either submit a pull request or send an email to any of the paper authors with results and the predictions of your model. Please also submit a reference to a paper describing your approach.

Evaluating your system

For evaluating your system according to Macro-F1, you simply need an individual prediction file for each of the languages. The format of the predictions file should be the same as the output examples in the predictions folder (one output label per line as per the original test file) and the files should be named language.txt (e.g. arabic.txt or all.txt if evaluating all languages at once). The predictions included as an example in this repo correspond to xlm-t trained and evaluated on all languages (All lang.).

Example usage

python src/evaluation_script.py

The script takes as input a set of test labels and the predictions from the "predictions" folder by default, but you can set this to suit your needs as optional arguments.

Optional arguments

Three optional arguments can be modified:

--gold_path: Path to gold datasets. Default: ./data/sentiment

--predictions_path: Path to predictions directory. Default: ./predictions/sentiment

--language: Language to evaluate (arabic, english ... or all). Default: all

Evaluation script sample usage from the terminal with parameters:

python src/evaluation_script.py --gold_path ./data/sentiment --predictions_path ./predictions/sentiment --language arabic

(this script would output the results for the Arabic dataset only)

Reference paper

If you use this repository in your research, please use the following bib entry to cite the reference paper.

@inproceedings{barbieri2021xlmtwitter,
  title={{A Multilingual Language Model Toolkit for Twitter}},
  author={Barbieri, Francesco and Espinosa-Anke, Luis and Camacho-Collados, Jose},
  booktitle={arXiv preprint arXiv:2104.12250},
  year={2021}
}

If using UMSAB, please also cite their corresponding datasets.

License

This repository is released open-source but but restrictions may apply to individual datasets (which are derived from existing data) or Twitter (main data source). We refer users to the original licenses accompanying each dataset and Twitter regulations.

Owner
Cardiff NLP
Cardiff NLP
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Good Classification Measures and How to Find Them

Good Classification Measures and How to Find Them This repository contains supplementary materials for the paper "Good Classification Measures and How

Yandex Research 7 Nov 13, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]

USD-Seg This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector f

Ruolin Ye 80 Nov 28, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021