A Distributional Approach To Controlled Text Generation

Related tags

Deep Learninggdc
Overview

A Distributional Approach To Controlled Text Generation

This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled Text Generation". The code in this repo should help reproduce all the experiments and results in the paper.

Installation

pip install -r requirements.txt

Code Guide and Examples

  • package gdc/: contains all trainer classes.
  • folder examples/: Implements the training loop for pointwise (run.py) and distributional & hybrid (run-distributional.py) experiments.
  • folder configs/: Contains template configurations for all types of experiments.

Configuration Files

We use json configuration files to pass all training parameters including the contraints type and specifications. Here are the most important config parameters (the rest are self-explanatory):

  • trainer_class: Depending on which type of costraint you want, use GDCTrainer for distributional and PointwiseGDCTrainer for pointwise constraints. Other trainers exist for baselines (see examples below).
  • lm_name: name of the language model you want to start with as on transformers hub.
  • ref_lm_name name of the reference policy language model (proposal used for importance sampling) as on transformers hub.
  • tk_name: tokenizer name.
  • scorers: this is the most important parameter which is used to define your constraints. You can view each constraint as a scorer function that takes a collection of samples and returns an equivalent number of values representing the degree of constraint satisfaction in each sample. Scorer is passed a list of json objects, each of which contains the following:
    • name: name of the constraint.
    • config: another json object with the following keys:
      • scorer_type: The type of constraints. Possible types include single_word, wordlist, wikibio-wordlist, model, and gender.
      • scorer_attribute: Depending on the scorer type, this defines what exactly do you want to control for that given type. (See below for a tutorial on building your own scorer).
  • desired_moments: this is specially for distributional constraints and it defines the required moments (feature means) that you want to achieve. Note that for pointwise constraints you must set your desired moment to 1.0.
  • moment_matching_sample_size: this defines the number of samples used for moment matching (or lambda learning). See section 2.2 in the paper.
  • eval_top_p: During training, we evaluate the model by sampling from it. This defines the nucleus sampling top_p value used for evaluation.
  • q_update_interval: Number of update steps after which we check if pi is better than q, and update q.
  • q_update_criterion: Criterion used to decide whether pi is improving or not. Options are KL-Divergence (used in the paper), or Total Variation Distance.
  • eval_interval: Number of updates after which to evaluate the model i.e sample with nucleus sampling and compute different quality metrics on the generations.

Pointwise Constraints

In the case of solely pointwise constraints, the EBM could be constructed directly as P(x) = a(x) . b(x) , where b(x) is a binary value indicating if the pointwise constraint is met or not for a specific sequence x. Therefore, calculations of the λ in the EBM is not necessary, we provide an optimized implementation for this using the PointwiseGDCTrainer.

  • Single words
# Fine tune GPT-2 on a single word constraint inside the 
#   "trainer_class": "PointwiseGDCTrainer",
# Single word = "amazing" pointwise constraint  
#    inside word.json
#    "trainer_class":"PointwiseGDCTrainer",
#    "scorer_type": "single_word",
#    "scorer_attribute": "amazing", (try it! replace "amazing" with any word)

python run.py --config ../configs/gdc/pointwise/word.json
  • Word lists
# Fine tune GPT-2 using on a word-list pointwise constraint
# inside wordlist.json:
#    "trainer_class":"PointwiseGDCTrainer",
#    "scorer_type": "wordlist",
#    "scorer_attribute": "politics",  (try it! replace with any filename in ./gdc/resources/wordlists/

python run.py --config ../configs/gdc/pointwise/wordlist.json
  • Discriminators
#    "trainer_class":"PointwiseGDCTrainer",
# Use a pretrained sentiment classifier (class id = 0 or 2) as a pointwise constraint 
#    "scorer_type": "model",
#    "scorer_attribute": "sentiment",
#    "class_index": [0,2], # class idx: 0 positive, 1 negative, 2 very positive, 3 very negative

python run.py --config ../configs/gdc/pointwise/discriminator.json

Distributional and Hybrid Constraints

  • Single Distributional Constraint
# inside the config file single-distributional.json
# this is how to define scorers and assign them the desired moments
#    "scorers":[
#        {"name": "female", "config":{"scorer_type": "gender", "scorer_attribute": "female"}}
#    ],
#    "desired_moments": {"female":0.50},
#    "trainer_class":"GDCTrainer",


python run-distributional.py --config ../configs/distributional/single-distributional.json

  • Multiple Distributional Constraints
# inside multiple-distributional.json config file
# add four wordlist constraints with different desired moments
#    "scorers":[
#        {"name": "science", "config":{"scorer_type": "wikibio-wordlist", "scorer_attribute":"science"}},
#        {"name": "art", "config":{"scorer_type": "wikibio-wordlist", "scorer_attribute": "art"}},
#        {"name": "sports", "config":{"scorer_type": "wikibio-wordlist", "scorer_attribute": "sports"},
#        {"name": "business", "config":{"scorer_type": "wikibio-wordlist", "scorer_attribute": "business"}}
#    ],
#    "desired_moments": {"science":0.4, "art":0.4, "business":0.10, "sports":0.10},
#    "trainer_class":"GDCTrainer",


python run-distributional.py --config ../configs/distributional/multiple-distributional.json
  • Hybrid constraints (pointwise + distributional)
# inside hybrid.json config file here is how to combine pointwise and distributional constraints
# when the desired moment 1.0 it becomes a pointwise constraint while 0.5 is distributional
#    "scorers":[
#        {"name": "female", "config":{ "scorer_type": "gender", "scorer_attribute": "female"}}, 
#        {"name": "sports", "config": {"scorer_type":"wikibio-wordlist", "scorer_attribute": "sports"}}
#    ],
#    "desired_moments": {"female":0.5, "sports": 1.0},
#    "trainer_class":"GDCTrainer",

python run-distributional.py --config ../configs/distributional/hybrid.json

Baselines

We implement three reinforcement learning baselines. Note that RL baselines are only suitable with Pointwise constraints, here are some examples how to run them for some pointwise tasks:

  • REINFORCE (Williams, 1992b) using the reward φ(x) as a reward signal.
# Fine tune GPT-2 using on a word list constraint
# inside REINFORCE.json those options are set to make allow this to happen
#    "trainer_class": "PGTrainer"   (PG -> Policy gradient)
#    "scorer_type": "wordlist",
#    "scorer_attribute": "politics",
python run.py --config ../configs/reinforce/REINIFORCE.json
  • REINFORCE_P(x) Reinforce again with the EBM P as a reward signal.
# Fine tune GPT-2 on a single word constraint
# inside REINFORCE_Px.json those options are set to make allow this to happen
# these two options below are activating REINFORCE_P(x) trainer baseline
#   "trainer_class": "PGTrainer",
#   "use_P_as_reward": true,    (this option works with PGTrainer to the EBM P)

# Single word = "amazing" pointwise constraint (try it! replace "amazing" with any word) 
#    "scorer_type": "single_word",
#    "scorer_attribute": "amazing",

python run.py --config ../configs/reinforce/REINIFORCE_Px.json
  • ZIEGLER (Ziegler et al., 2019): Proximal Policy Optimization (PPO) algorithm with φ(x) as a reward signal in addition to a KL penalty penalizing divergences from the original LM.
# Fine tune GPT-2 on a single word constraint
# inside PPO.json
#   "trainer_class": "PPOTrainer",

# use a pretrained sentiment classifier (class id = 0 or 2) as a pointwise constraint 
#    "scorer_type": "model",
#    "scorer_attribute": "sentiment",
#    "class_index": [0,2], # class idx: 0 positive, 1 negative, 2 very postive, 3 very negative

python run.py --config ../configs/ppo/PPO.json

How Do I Define My Own Constraint?

Let's say you have a another kind of constraint different from the ones existing. Let's say you're not very passionate about the letter "z", so you want only 20% of the generated text to contain the letter "z". Clearly, this is a distributional constraint.

Step 1: Build you Scorer Function.

The first step is to go to gdc/scorer.py and in get_scoring_fn(), you add another if branch (obviously with more scorers, this should be done in a more elegant way):

elif self.config['scorer_type'] == 'single_letter`:
   
   def scoring_fn(samples):
      # code that checks for the existence of a certain generic letter.
      # the letter should be passed in self.config['scorer_attribute']
      # return [1 if a sample containts the letter, otherwise 0 for all samples]
      

You can also add any code that your scorer would need in the init() function.

Step 2: Set up your Configs

As you only have a single distributional constraint. you can clone gdc/configs/distributional/single-distributional.json and edit the following to add your "z" letter constraint.

 "scorers":[
        {"name": "z_20", "config":{"scorer_type": "single_letter", "scorer_attribute":"z"}}
        ]
 "desired_moments": {"z_20":0.20}, 
 ....

then just pass the new config json to run-distributional.py as shown above, and you are good to go!

Contributors

Authors of this work have contributed equally to this project and its affiliated publication. Muhammad Khalifa has performed this work during his research internship at Naver Labs Europe.

Muhammad Khalifa, [email protected]

Hady Elsahar, [email protected]

Marc Dymetman, [email protected]

Citation

@inproceedings{
    CNTRL_NLG_ICLR2021,
    title={A Distributional Approach to Controlled Text Generation},
    author={Muhammad Khalifa and Hady Elsahar and Marc Dymetman},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=jWkw45-9AbL}
}
Owner
NAVER
NAVER
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022