Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Overview

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation

This repo contains code of Simcal, which won the LVIS 2019 challenge. Note that it can achieve much higher tail class performance by simply change the calibration head from 2-layer fc with random initialization (2fc_rand) to 3-layer fc initialized from original model with standard training (3fc_ft), refer to paper for details. But we did not notice this during the challenge submission and used 2fc_rand, so much higher result of tail clasees on test set is expected with SimCal 3fc_ft.

License

This project is released under the Apache 2.0 license.

TODO

  • remove and clean redundant and commented codes
  • update script for installing with pytorch 1.1.0 to have faster calibration training
  • merge mask r-cnn and htc model test file, add htc calibration code, add Props-GT experiment code

Pull requests to improve the codebase or fix bugs are welcome

Installation

Simcal is based on mmdetection, Please refer to INSTALL.md for installation and dataset preparation.

Or run the following installation script:

#!/usr/bin/env bash
conda create -n simcal_mmdet python=3.7
source ~/anaconda3/etc/profile.d/conda.sh
conda init bash
conda activate simcal_mmdet
echo "python path"
which python
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 -c pytorch
pip install cython==0.29.12 mmcv==0.2.16 matplotlib terminaltables
pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
pip install opencv-python-headless
pip install Pillow==6.1
pip install numpy==1.17.1 --no-deps
git clone https://github.com/twangnh/SimCal
cd SimCal
pip install -v -e .

To also get instance-centric AP results, please do not install official LVIS api or cocoapi with pip, as we have modified it with a local copy in the repository to additionally calculate instance centric bin AP results (i.e., AP1,AP2,AP3,AP4). We may create a pull request to update the official APIs for this purpose later.

Dataset preparation

For LVIS dataset, please arrange the data as:

SimCal
├── configs
├── data
│   ├── LVIS
│   │   ├── lvis_v0.5_train.json.zip
│   │   ├── lvis_v0.5_val.json.zip
│   │   ├── images
│   │   │   ├── train2017
│   │   │   ├── val2017

note for LVIS images, you can just create a softlink for the val2017 to point to COCO val2017

For COCO-LT (our sampled long-tail version of COCO, refer to paper for details), please download the sampled annotation file train_coco2017_LT_sampled.json and put it at data/coco/annotations/

Training (Calibration)

Calibration uses multi-gpu training to perform bi-level proposal sampling, to run calibration on a model, e.g.,

python tools/train.py configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py --use_model 3fc_ft --exp_prefix xxx --gpus 4/8

will use 3fc_ft head as described in the paper and save calibrated head ckpt with exp_prefix

Pre-trained models and calibrated heads

All the calibrated models reported in the paper are released for reproduction and future research:

Model Link
r50-ag epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
r50 epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
r50-ag-coco-lt epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
htc-x101 epoch-20 Googledrive
calhead-stege0 Googledrive
calhead-stege1 Googledrive
calhead-stege2 Googledrive

To evaluate and reproduce the paper result models, please first download the model checkpoints and arrange them as:

SimCal
├── configs
├── work_dirs
    |-- htc
    |   |-- 3fc_ft_stage0.pth
    |   |-- 3fc_ft_stage1.pth
    |   |-- 3fc_ft_stage2.pth
    |   `-- epoch_20.pth
    |-- mask_rcnn_r50_fpn_1x_cocolt_agnostic
    |   |-- 3fc_ft.pth
    |   `-- epoch_12.pth
    |-- mask_rcnn_r50_fpn_1x_lvis_agnostic
    |   |-- 3fc_ft.pth
    |   `-- epoch_12.pth
    `-- mask_rcnn_r50_fpn_1x_lvis_clswise
        |-- 3fc_ft_epoch.pth
        |-- 3fc_ft.pth
        `-- epoch_12.pth

Test with pretrained models and calibrated heads

mrcnn on lvis, paper result:

mrcnn on lvis paper result

Test LVIS r50-ag model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

bin 0_10 AP: 0.13286122428874017
bin 10_100 AP: 0.23243947868384135
bin 100_1000 AP: 0.20696891455408
bin 1000_* AP: 0.2615438157753328
bAP 0.20845335832549858
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.222
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.354
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.236
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.154
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.298
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.373
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.182
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.215
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.247
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.315
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.216
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.453

Test LVIS r50 model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_clswise.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

bin 0_10 AP: 0.10187003036862649
bin 10_100 AP: 0.23907519508889202
bin 100_1000 AP: 0.22468457541750592
bin 1000_* AP: 0.28687985066050825
bAP 0.21312741288388318
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.234
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.375
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.245
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.167
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.316
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.405
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.164
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.225
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.272
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.331
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.399
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.481

mrcnn on cocolt, paper result:

mrcnn on lvis paper result

Test COCO-LT r50-ag model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.246
bin ins nums: [4, 24, 32, 20]
bins ap: [0.1451797625472811, 0.1796142130031695, 0.27337165679657216, 0.3027201541441131]
eAP : 0.22522144662278398
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.412
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.257
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.133
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.278
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.334
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.239
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.424
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.450
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.269
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.481
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586

htc on lvis, paper result:

mrcnn on lvis paper result

Test HTC model (use --eval bbox for box result)

./tools/dist_test_htc.sh configs/simcal/calibration/htc_lvis_31d9.py 8 --out ./temp2.pkl --eval segm

bin 0_10 AP: 0.18796762487467375
bin 10_100 AP: 0.34907335159564473
bin 100_1000 AP: 0.3304618611020927
bin 1000_* AP: 0.3674197862439286
bAP 0.30873065595408494
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.334
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.490
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.357
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.228
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.422
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.565
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.247
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.337
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.364
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.428
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.300
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.506
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.631

note testing with LVIS can be significantly slower as max_det is 300 and det confidence threshold is 0.0

Props-GT experiment

By Props-GT experiment, we would like to emphasize that there is still large room of improvement along the direction of improving object proposal classification.

Balanced Group Softmax

We also encourage you to check our following up work Balanced Group Softmax after the LVIS challenge, (accepted by CVPR20 oral). It employs a more specific calibration approach with redesigned the softmax function, the calibration is more effective without dual-head inference, and only calibrates last layer of classification head. Code is available at https://github.com/FishYuLi/BalancedGroupSoftmax

Citation

Please consider to cite our ECCV20 paper:

@article{wang2020devil,
  title={The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation},
  author={Wang, Tao and Li, Yu and Kang, Bingyi and Li, Junnan and Liew, Junhao and Tang, Sheng and Hoi, Steven and Feng, Jiashi},
  journal={arXiv preprint arXiv:2007.11978},
  year={2020}
}

tech report for LVIS challenge 2019 at ICCV19 (Yu Li and Tao Wang have equal contribution for the LVIS challenge):

@article{wang2019classification,
  title={Classification Calibration for Long-tail Instance Segmentation},
  author={Wang, Tao and Li, Yu and Kang, Bingyi and Li, Junnan and Liew, Jun Hao and Tang, Sheng and Hoi, Steven and Feng, Jiashi},
  journal={arXiv preprint arXiv:1910.13081},
  year={2019}
}

Our following work Group Softmax at CVPR20 (oral):

@inproceedings{li2020overcoming,
  title={Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax},
  author={Li, Yu and Wang, Tao and Kang, Bingyi and Tang, Sheng and Wang, Chunfeng and Li, Jintao and Feng, Jiashi},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10991--11000},
  year={2020}
}
Owner
twang
make things work
twang
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022