Remote sensing change detection using PaddlePaddle

Overview

Change Detection Laboratory

Developing and benchmarking deep learning-based remote sensing change detection methods using PaddlePaddle.

CDLab also has a PyTorch version. Currently, this repo contains more model implementations, dataset interfaces, and configuration files.

Prerequisites

opencv-python==4.1.1
paddlepaddle-gpu==2.2.0
visualdl==2.2.1
pyyaml==5.1.2
scikit-image==0.15.0
scikit-learn==0.21.3
scipy==1.3.1
tqdm==4.35.0

Tested using Python 3.7.4 on Ubuntu 16.04.

Get Started

In src/constants.py, change the dataset locations to your own.

Model Training

To train a model from scratch, use

python train.py train --exp_config PATH_TO_CONFIG_FILE

A few configuration files regarding different datasets and models are provided in the configs/ folder for ease of use.

As soon as the program starts and prints out the configurations, there will be a prompt asking you to write some notes. What you write will be recorded into the log file to help you remember what you did, or you can simply skip this step by pressing [Enter].

To resume training from some checkpoint, run the code with the --resume option.

python train.py train --exp_config PATH_TO_CONFIG_FILE --resume PATH_TO_CHECKPOINT

Other commandline options include:

  • --anew: Add it if the checkpoint is just used to initialize model weights. Note that loading an incompatible checkpoint is supported as a feature, which is useful when you are trying to utilize a well pretrained model for finetuning.
  • --save_on: By default, an epoch-based trainer is used for training. At the end of each training epoch, the trainer evaluates the model on the validation dataset. If you want to save the model output during the evaluation process, enable this option.
  • --log_off: Disable logging.
  • --vdl_on: Enable VisualDL summaries.
  • --debug_on: Useful when you are debugging your own code. In debugging mode, no checkpoint or model output will be written to disk. In addition, a breakpoint will be set where an unhandled exception occurs, which allows you to locate the causes of the crash or do some cleanup jobs.

During or after the training process, you can check the model weight files in exp/DATASET_NAME/weights/, the log files in exp/DATASET_NAME/logs, and the output change maps in exp/DATASET_NAME/out.

Model Evaluation

To evaluate a model on the test subset, use

python train.py eval --exp_config PATH_TO_CONFIG_FILE --resume PATH_TO_CHECKPOINT --save_on --subset test

Supported Architectures

Architecture Name Link
CDNet CDNet paper
FC-EF Unet paper
FC-Siam-conc SiamUnet-conc paper
FC-Siam-diff SiamUnet-diff paper
STANet STANet paper
DSIFN IFN paper
SNUNet SNUNet paper

Supported Datasets

Dataset Name Link
SZTAKI AirChange Benchmark set: Szada set AC-Szada website
SZTAKI AirChange Benchmark set: Tiszadob set AC-Tiszadob website
Onera Satellite Change Detection dataset OSCD website
Synthetic images and real season-varying remote sensing images SVCD google drive
LEVIR building change detection dataset LEVIRCD website
WHU building change detection dataset WHU website

This repository is currently under development. Note that no license has yet been added.

Owner
Lin Manhui
sluggish.
Lin Manhui
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022