[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

Overview

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

This repository is the official PyTorch implementation of CORE-Text, and contains demo training and evaluation scripts.

CORE-Text

Requirements

Training Demo

Base (Mask R-CNN)

To train Base (Mask R-CNN) on a single node with 4 gpus, run:

#!/usr/bin/env bash

GPUS=4
PORT=${PORT:-29500}
PYTHON=${PYTHON:-"python"}

CONFIG=configs/icdar2017mlt/base.py
WORK_DIR=work_dirs/mask_rcnn_r50_fpn_train_base

$PYTHON -m torch.distributed.launch --nproc_per_node=$GPUS \
                                    --nnodes=1 --node_rank=0 --master_addr="localhost" \
                                    --master_port=$PORT \
                                    tools/train.py \
                                    $CONFIG \
                                    --no-validate \
                                    --launcher pytorch \
                                    --work-dir ${WORK_DIR} \
                                    --seed 0

VRM

To train VRM on a single node with 4 gpus, run:

#!/usr/bin/env bash

GPUS=4
PORT=${PORT:-29500}
PYTHON=${PYTHON:-"python"}

CONFIG=configs/icdar2017mlt/vrm.py
WORK_DIR=work_dirs/mask_rcnn_r50_fpn_train_vrm

$PYTHON -m torch.distributed.launch --nproc_per_node=$GPUS \
                                    --nnodes=1 --node_rank=0 --master_addr="localhost" \
                                    --master_port=$PORT \
                                    tools/train.py \
                                    $CONFIG \
                                    --no-validate \
                                    --launcher pytorch \
                                    --work-dir ${WORK_DIR} \
                                    --seed 0

CORE

To train CORE (ours) on a single node with 4 gpus, run:

#!/usr/bin/env bash

GPUS=4
PORT=${PORT:-29500}
PYTHON=${PYTHON:-"python"}

# pre-training
CONFIG=configs/icdar2017mlt/core_pretrain.py
WORK_DIR=work_dirs/mask_rcnn_r50_fpn_train_core_pretrain

$PYTHON -m torch.distributed.launch --nproc_per_node=$GPUS \
                                    --nnodes=1 --node_rank=0 --master_addr="localhost" \
                                    --master_port=$PORT \
                                    tools/train.py \
                                    $CONFIG \
                                    --no-validate \
                                    --launcher pytorch \
                                    --work-dir ${WORK_DIR} \
                                    --seed 0

# training
CONFIG=configs/icdar2017mlt/core.py
WORK_DIR=work_dirs/mask_rcnn_r50_fpn_train_core

$PYTHON -m torch.distributed.launch --nproc_per_node=$GPUS \
                                    --nnodes=1 --node_rank=0 --master_addr="localhost" \
                                    --master_port=$PORT \
                                    tools/train.py \
                                    $CONFIG \
                                    --no-validate \
                                    --launcher pytorch \
                                    --work-dir ${WORK_DIR} \
                                    --seed 0

Evaluation Demo

GPUS=4
PORT=${PORT:-29500}
CONFIG=path/to/config
CHECKPOINT=path/to/checkpoint

python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT \
    ./tools/test.py $CONFIG $CHECKPOINT --launcher pytorch \
    --eval segm \
    --not-encode-mask \
    --eval-options "jsonfile_prefix=path/to/work_dir/results/eval" "gt_path=data/icdar2017mlt/icdar2017mlt_gt.zip"

Dataset Format

The structure of the dataset directory is shown as following, and we provide the COCO-format label (ICDAR2017_train.json and ICDAR2017_val.json) and the ground truth zipfile (icdar2017mlt_gt.zip) for training and evaluation.

data
└── icdar2017mlt
    ├── annotations
    |   ├── ICDAR2017_train.json
    |   └── ICDAR2017_val.json
    ├── icdar2017mlt_gt.zip
    └── image
         ├── train
         └── val

Results

Our model achieves the following performance on ICDAR 2017 MLT val set. Note that the results are slightly different (~0.1%) from what we reported in the paper, because we reimplement the code based on the open-source mmdetection.

Method Backbone Training set Test set Hmean Precision Recall Download
Base (Mask R-CNN) ResNet50 ICDAR 2017 MLT Train ICDAR 2017 MLT Val 0.800 0.828 0.773 model | log
VRM ResNet50 ICDAR 2017 MLT Train ICDAR 2017 MLT Val 0.812 0.853 0.774 model | log
CORE (ours) ResNet50 ICDAR 2017 MLT Train ICDAR 2017 MLT Val 0.821 0.872 0.777 model | log

Citation

@inproceedings{9428457,
  author={Lin, Jingyang and Pan, Yingwei and Lai, Rongfeng and Yang, Xuehang and Chao, Hongyang and Yao, Ting},
  booktitle={2021 IEEE International Conference on Multimedia and Expo (ICME)},
  title={Core-Text: Improving Scene Text Detection with Contrastive Relational Reasoning},
  year={2021},
  pages={1-6},
  doi={10.1109/ICME51207.2021.9428457}
}
Owner
Jingyang Lin
Graduate student @ SYSU.
Jingyang Lin
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022