TVNet: Temporal Voting Network for Action Localization

Related tags

Deep LearningTVNet
Overview

TVNet: Temporal Voting Network for Action Localization

This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization".

Paper Introduction

Temporal action localization is a vital task in video understranding. In this paper, we propose a Temporal Voting Network (TVNet) for action localization in untrimmed videos. This incorporates a novel Voting Evidence Module to locate temporal boundaries, more accurately, where temporal contextual evidence is accumulated to predict frame-level probabilities of start and end action boundaries.

Dependencies

  • Python == 2.7
  • Tensorflow == 1.9.0
  • CUDA==10.1.105
  • GCC >= 5.4

Note that the PEM code from BMN is implemented in Pytorch==1.1.0 or 1.3.0

Data Preparation

Datasets

Our experiments is based on ActivityNet 1.3 and THUMOS14 datasets.

Feature for THUMOS14

You can download the feature on THUMOS14 at here GooogleDrive.

Place it into a folder named thumos_features inside ./data.

You also need to download the feature for PEM (from BMN) at GooogleDrive. Please put it into a folder named Thumos_feature_hdf5 inside ./TVNet-THUMOS14/data/thumos_features.

If everything goes well, you can get the folder architecture of ./TVNet-THUMOS14/data like this:

data                       
└── thumos_features                    
		├── Thumos_feature_dim_400              
		├── Thumos_feature_hdf5               
		├── features_train.npy 
		└── features_test.npy

Feature for ActivityNet 1.3

You can download the feature on ActivityNet 1.3 at here GoogleCloud. Please put csv_mean_100 directory into ./TVNet-ANET/data/activitynet_feature_cuhk/.

If everything goes well, you can get the folder architecture of ./TVNet-ANET/data like this:

data                        
└── activitynet_feature_cuhk                    
		    └── csv_mean_100

Run all steps

Run all steps on THUMOS14

cd TVNet-THUMOS14

Run the following script with all steps on THUMOS14:

bash do_all.sh

Note: If you use BlueCrystal 4, you can directly run the following script without any dependencies setup.

bash do_all_BC4.sh

Run all steps on ActivityNet 1.3

cd TVNet-ANET
bash do_all.sh  or  bash do_all_BC4.sh

Run steps separately

Take TVNet-THUMOS14 as an example:

cd TVNet-THUMOS14

1. Temporal evaluation module

python TEM_train.py
python TEM_test.py

2. Creat training data for voting evidence module

python VEM_create_windows.py --window_length L --window_stride S

L is the window length and S is the sliding stride. We generate training windows for length 10 with stride 5, and length 5 with stride 2.

3. Voting evidence module

python VEM_train.py --voting_type TYPE --window_length L --window_stride S
python VEM_test.py --voting_type TYPE --window_length L --window_stride S

TYPE should be start or end. We train and test models with window length 10 (stride 5) and window length 5 (stride 2) for start and end separately.

4. Proposal evaluation module from BMN

python PEM_train.py

5. Proposal generation

python proposal_generation.py

6. Post processing and detection

python post_postprocess.py

Results

THUMOS14

tIoU [email protected]
0.3 0.5724681814413137
0.4 0.5060844218403346
0.5 0.430414918823808
0.6 0.3297164845828022
0.7 0.202971546242546

ActivityNet 1.3

tIoU [email protected]
Average 0.3460396513933088
0.5 0.5135151163296395
0.75 0.34955648726767025
0.95 0.10121803584836778

Reference

This implementation borrows from:

BSN: BSN-Boundary-Sensitive-Network

TEM_train/test.py -- for the TEM module we used in our paper
load_dataset.py -- borrow the part which load data for TEM

BMN: BMN-Boundary-Matching-Network

PEM_train.py -- for the PEM module we used in our paper

G-TAD: Sub-Graph Localization for Temporal Action Detection

post_postprocess.py -- for the multicore process to generate detection

Our main contribution is in:

VEM_create_windows.py -- generate training annotations for Voting Evidence Module (VEM)

VEM_train.py -- train Voting Evidence Module (VEM)

VEM_test.py -- test Voting Evidence Module (VEM)
Owner
hywang
hywang
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph".

multilingual-mrc-isdg Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph". This r

Liyan 5 Dec 07, 2022