TVNet: Temporal Voting Network for Action Localization

Related tags

Deep LearningTVNet
Overview

TVNet: Temporal Voting Network for Action Localization

This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization".

Paper Introduction

Temporal action localization is a vital task in video understranding. In this paper, we propose a Temporal Voting Network (TVNet) for action localization in untrimmed videos. This incorporates a novel Voting Evidence Module to locate temporal boundaries, more accurately, where temporal contextual evidence is accumulated to predict frame-level probabilities of start and end action boundaries.

Dependencies

  • Python == 2.7
  • Tensorflow == 1.9.0
  • CUDA==10.1.105
  • GCC >= 5.4

Note that the PEM code from BMN is implemented in Pytorch==1.1.0 or 1.3.0

Data Preparation

Datasets

Our experiments is based on ActivityNet 1.3 and THUMOS14 datasets.

Feature for THUMOS14

You can download the feature on THUMOS14 at here GooogleDrive.

Place it into a folder named thumos_features inside ./data.

You also need to download the feature for PEM (from BMN) at GooogleDrive. Please put it into a folder named Thumos_feature_hdf5 inside ./TVNet-THUMOS14/data/thumos_features.

If everything goes well, you can get the folder architecture of ./TVNet-THUMOS14/data like this:

data                       
└── thumos_features                    
		├── Thumos_feature_dim_400              
		├── Thumos_feature_hdf5               
		├── features_train.npy 
		└── features_test.npy

Feature for ActivityNet 1.3

You can download the feature on ActivityNet 1.3 at here GoogleCloud. Please put csv_mean_100 directory into ./TVNet-ANET/data/activitynet_feature_cuhk/.

If everything goes well, you can get the folder architecture of ./TVNet-ANET/data like this:

data                        
└── activitynet_feature_cuhk                    
		    └── csv_mean_100

Run all steps

Run all steps on THUMOS14

cd TVNet-THUMOS14

Run the following script with all steps on THUMOS14:

bash do_all.sh

Note: If you use BlueCrystal 4, you can directly run the following script without any dependencies setup.

bash do_all_BC4.sh

Run all steps on ActivityNet 1.3

cd TVNet-ANET
bash do_all.sh  or  bash do_all_BC4.sh

Run steps separately

Take TVNet-THUMOS14 as an example:

cd TVNet-THUMOS14

1. Temporal evaluation module

python TEM_train.py
python TEM_test.py

2. Creat training data for voting evidence module

python VEM_create_windows.py --window_length L --window_stride S

L is the window length and S is the sliding stride. We generate training windows for length 10 with stride 5, and length 5 with stride 2.

3. Voting evidence module

python VEM_train.py --voting_type TYPE --window_length L --window_stride S
python VEM_test.py --voting_type TYPE --window_length L --window_stride S

TYPE should be start or end. We train and test models with window length 10 (stride 5) and window length 5 (stride 2) for start and end separately.

4. Proposal evaluation module from BMN

python PEM_train.py

5. Proposal generation

python proposal_generation.py

6. Post processing and detection

python post_postprocess.py

Results

THUMOS14

tIoU [email protected]
0.3 0.5724681814413137
0.4 0.5060844218403346
0.5 0.430414918823808
0.6 0.3297164845828022
0.7 0.202971546242546

ActivityNet 1.3

tIoU [email protected]
Average 0.3460396513933088
0.5 0.5135151163296395
0.75 0.34955648726767025
0.95 0.10121803584836778

Reference

This implementation borrows from:

BSN: BSN-Boundary-Sensitive-Network

TEM_train/test.py -- for the TEM module we used in our paper
load_dataset.py -- borrow the part which load data for TEM

BMN: BMN-Boundary-Matching-Network

PEM_train.py -- for the PEM module we used in our paper

G-TAD: Sub-Graph Localization for Temporal Action Detection

post_postprocess.py -- for the multicore process to generate detection

Our main contribution is in:

VEM_create_windows.py -- generate training annotations for Voting Evidence Module (VEM)

VEM_train.py -- train Voting Evidence Module (VEM)

VEM_test.py -- test Voting Evidence Module (VEM)
Owner
hywang
hywang
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
Space Invaders For Python

Space-Invaders Just download or clone the git repository. To run the Space Invader game you need to have pyhton installed in you system. If you dont h

Fei 5 Jul 27, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022