PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Overview

Lip to Speech Synthesis with Visual Context Attentional GAN

This repository contains the PyTorch implementation of the following paper:

Lip to Speech Synthesis with Visual Context Attentional GAN
Minsu Kim, Joanna Hong, and Yong Man Ro
[Paper] [Demo Video]

Preparation

Requirements

  • python 3.7
  • pytorch 1.6 ~ 1.8
  • torchvision
  • torchaudio
  • ffmpeg
  • av
  • tensorboard
  • scikit-image
  • pillow
  • librosa
  • pystoi
  • pesq
  • scipy

Datasets

Download

GRID dataset (video normal) can be downloaded from the below link.

For data preprocessing, download the face landmark of GRID from the below link.

Preprocessing

After download the dataset, preprocess the dataset with the following scripts in ./preprocess.
It supposes the data directory is constructed as

Data_dir
├── subject
|   ├── video
|   |   └── xxx.mpg
  1. Extract frames
    Extract_frames.py extract images and audio from the video.
python Extract_frames.py --Grid_dir "Data dir of GRID_corpus" --Out_dir "Output dir of images and audio of GRID_corpus"
  1. Align faces and audio processing
    Preprocess.py aligns faces and generates videos, which enables cropping the video lip-centered during training.
python Preprocess.py \
--Data_dir "Data dir of extracted images and audio of GRID_corpus" \
--Landmark "Downloaded landmark dir of GRID" \
--Output_dir "Output dir of processed data"

Training the Model

The speaker setting (different subject) can be selected by subject argument. Please refer to below examples.
To train the model, run following command:

# Data Parallel training example using 4 GPUs for multi-speaker setting in GRID
python train.py \
--grid 'enter_the_processed_data_path' \
--checkpoint_dir 'enter_the_path_to_save' \
--batch_size 88 \
--epochs 500 \
--subject 'overlap' \
--eval_step 720 \
--dataparallel \
--gpu 0,1,2,3
# 1 GPU training example for GRID for unseen-speaker setting in GRID
python train.py \
--grid 'enter_the_processed_data_path' \
--checkpoint_dir 'enter_the_path_to_save' \
--batch_size 22 \
--epochs 500 \
--subject 'unseen' \
--eval_step 1000 \
--gpu 0

Descriptions of training parameters are as follows:

  • --grid: Dataset location (grid)
  • --checkpoint_dir: directory for saving checkpoints
  • --checkpoint : saved checkpoint where the training is resumed from
  • --batch_size: batch size
  • --epochs: number of epochs
  • --augmentations: whether performing augmentation
  • --dataparallel: Use DataParallel
  • --subject: different speaker settings, s# is speaker specific training, overlap for multi-speaker setting, unseen for unseen-speaker setting, four for four speaker training
  • --gpu: gpu number for training
  • --lr: learning rate
  • --eval_step: steps for performing evaluation
  • --window_size: number of frames to be used for training
  • Refer to train.py for the other training parameters

The evaluation during training is performed for a subset of the validation dataset due to the heavy time costs of waveform conversion (griffin-lim).
In order to evaluate the entire performance of the trained model run the test code (refer to "Testing the Model" section).

check the training logs

tensorboard --logdir='./runs/logs to watch' --host='ip address of the server'

The tensorboard shows the training and validation loss, evaluation metrics, generated mel-spectrogram, and audio

Testing the Model

To test the model, run following command:

# Dataparallel test example for multi-speaker setting in GRID
python test.py \
--grid 'enter_the_processed_data_path' \
--checkpoint 'enter_the_checkpoint_path' \
--batch_size 100 \
--subject 'overlap' \
--save_mel \
--save_wav \
--dataparallel \
--gpu 0,1

Descriptions of training parameters are as follows:

  • --grid: Dataset location (grid)
  • --checkpoint : saved checkpoint where the training is resumed from
  • --batch_size: batch size
  • --dataparallel: Use DataParallel
  • --subject: different speaker settings, s# is speaker specific training, overlap for multi-speaker setting, unseen for unseen-speaker setting, four for four speaker training
  • --save_mel: whether to save the 'mel_spectrogram' and 'spectrogram' in .npz format
  • --save_wav: whether to save the 'waveform' in .wav format
  • --gpu: gpu number for training
  • Refer to test.py for the other parameters

Test Automatic Speech Recognition (ASR) results of generated results: WER

Transcription (Ground-truth) of GRID dataset can be downloaded from the below link.

move to the ASR_model directory

cd ASR_model/GRID

To evaluate the WER, run following command:

# test example for multi-speaker setting in GRID
python test.py \
--data 'enter_the_generated_data_dir (mel or wav) (ex. ./../../test/spec_mel)' \
--gtpath 'enter_the_downloaded_transcription_path' \
--subject 'overlap' \
--gpu 0

Descriptions of training parameters are as follows:

  • --data: Data for evaluation (wav or mel(.npz))
  • --wav : whether the data is waveform or not
  • --batch_size: batch size
  • --subject: different speaker settings, s# is speaker specific training, overlap for multi-speaker setting, unseen for unseen-speaker setting, four for four speaker training
  • --gpu: gpu number for training
  • Refer to ./ASR_model/GRID/test.py for the other parameters

Pre-trained ASR model checkpoint

Below lists are the pre-trained ASR model to evaluate the generated speech.
WER shows the original performances of the model on ground-truth audio.

Setting WER
GRID (constrained-speaker) 0.83 %
GRID (multi-speaker) 1.67 %
GRID (unseen-speaker) 0.37 %
LRW 1.54 %

Put the checkpoints in ./ASR_model/GRID/data for GRID, and in ./ASR_model/LRW/data for LRW.

Citation

If you find this work useful in your research, please cite the paper:

@article{kim2021vcagan,
  title={Lip to Speech Synthesis with Visual Context Attentional GAN},
  author={Kim, Minsu and Hong, Joanna and Ro, Yong Man},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022