A Fast Knowledge Distillation Framework for Visual Recognition

Overview

FKD: A Fast Knowledge Distillation Framework for Visual Recognition

Official PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition. Zhiqiang Shen and Eric Xing from CMU and MUZUAI.

Abstract

Knowledge Distillation (KD) has been recognized as a useful tool in many visual tasks, such as the supervised classification and self-supervised representation learning, while the main drawback of a vanilla KD framework lies in its mechanism that most of the computational overhead is consumed on forwarding through the giant teacher networks, which makes the whole learning procedure in a low-efficient and costly manner. In this work, we propose a Fast Knowledge Distillation (FKD) framework that simulates the distillation training phase and generates soft labels following the multi-crop KD procedure, meanwhile enjoying the faster training speed than ReLabel as we have no post-processes like RoI align and softmax operations. Our FKD is even more efficient than the conventional classification framework when employing multi-crop in the same image for data loading. We achieve 79.8% using ResNet-50 on ImageNet-1K, outperforming ReLabel by ~1.0% while being faster. We also demonstrate the efficiency advantage of FKD on the self-supervised learning task.

Supervised Training

Preparation

FKD Training on CNNs

To train a model, run train_FKD.py with the desired model architecture and the path to the soft label and ImageNet dataset:

python train_FKD.py -a resnet50 --lr 0.1 --num_crops 4 -b 1024 --cos --softlabel_path [soft label path] [imagenet-folder with train and val folders]

For --softlabel_path, simply use format as ./FKD_soft_label_500_crops_marginal_smoothing_k_5

Multi-processing distributed training is supported, please refer to official PyTorch ImageNet training code for details.

Evaluation

python train_FKD.py -a resnet50 -e --resume [model path] [imagenet-folder with train and val folders]

Trained Models

Model accuracy (Top-1) weights configurations
ReLabel ResNet-50 78.9 -- --
FKD ResNet-50 79.8 link Table 10 in paper
ReLabel ResNet-101 80.7 -- --
FKD ResNet-101 81.7 link Table 10 in paper

FKD Training on ViT/DeiT and SReT

To train a ViT model, run train_ViT_FKD.py with the desired model architecture and the path to the soft label and ImageNet dataset:

cd train_ViT
python train_ViT_FKD.py -a SReT_LT --lr 0.002 --wd 0.05 --num_crops 4 -b 1024 --cos --softlabel_path [soft label path] [imagenet-folder with train and val folders]

For the instructions of SReT_LT model, please refer to SReT for details.

Evaluation

python train_ViT_FKD.py -a SReT_LT -e --resume [model path] [imagenet-folder with train and val folders]

Trained Models

Model FLOPs #params accuracy (Top-1) weights configurations
DeiT-T-distill 1.3B 5.7M 74.5 -- --
FKD ViT/DeiT-T 1.3B 5.7M 75.2 link Table 11 in paper
SReT-LT-distill 1.2B 5.0M 77.7 -- --
FKD SReT-LT 1.2B 5.0M 78.7 link Table 11 in paper

Fast MEAL V2

Please see MEAL V2 for the instructions to run FKD with MEAL V2.

Self-supervised Representation Learning Using FKD

Please see FKD-SSL for the instructions to run FKD code for SSL task.

Citation

@article{shen2021afast,
      title={A Fast Knowledge Distillation Framework for Visual Recognition}, 
      author={Zhiqiang Shen and Eric Xing},
      year={2021},
      journal={arXiv preprint arXiv:2112.01528}
}

Contact

Zhiqiang Shen (zhiqians at andrew.cmu.edu or zhiqiangshen0214 at gmail.com)

Owner
Zhiqiang Shen
Zhiqiang Shen
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
wlad 2 Dec 19, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022