Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Related tags

Deep LearningBread
Overview

Low-light Image Enhancement via Breaking Down the Darkness

by Qiming Hu, Xiaojie Guo.

1. Dependencies

  • Python3
  • PyTorch>=1.0
  • OpenCV-Python, TensorboardX
  • NVIDIA GPU+CUDA

2. Network Architecture

figure_arch

3. Data Preparation

3.1. Training dataset

  • 485 low/high-light image pairs from our485 of LOL dataset, each low image of which is augmented by our exposure_augment.py to generate 8 images under different exposures.
  • To train the MECAN (if it is desired), 559 randomly-selected multi-exposure sequences from SICE are adopted.

3.2. Tesing dataset

The images for testing can be downloaded in this link.

4. Usage

4.1. Training

  • Multi-exposure data synthesis: python exposure_augment.py
  • Train IAN: python train_IAN.py -m IAN --comment IAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche
  • Train ANSN: python train_ANSN.py -m1 IAN -m2 ANSN --comment ANSN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche -m1w ./checkpoints/IAN_335.pth
  • Train CAN: python train_CAN.py -m1 IAN -m3 FuseNet --comment CAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche -m1w ./checkpoints/IAN_335.pth
  • Train MECAN on SICE: python train_MECAN.py -m FuseNet --comment MECAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche
  • Finetune MECAN on SICE and LOL datasets: python train_MECAN_finetune.py -m FuseNet --comment MECAN_finetune --batch_size 1 --val_interval 1 --num_epochs 500 --lr 1e-4 --no_sche -mw ./checkpoints/FuseNet_MECAN_for_Finetuning_404.pth

4.2. Testing

  • [Tips]: Using gamma correction for evaluation with parameter --gc; Show extra intermediate outputs with parameter --save_extra
  • Evaluation: python eval_Bread.py -m1 IAN -m2 ANSN -m3 FuseNet -m4 FuseNet --mef --comment Bread+NFM+ME[eval] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth -m4w ./checkpoints/FuseNet_NFM_297.pth
  • Testing: python test_Bread.py -m1 IAN -m2 ANSN -m3 FuseNet -m4 FuseNet --mef --comment Bread+NFM+ME[test] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth -m4w ./checkpoints/FuseNet_NFM_297.pth
  • Remove NFM: python test_Bread_NoNFM.py -m1 IAN -m2 ANSN -m3 FuseNet --mef -a 0.10 --comment Bread+ME[test] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth

4.3. Trained weights

Please refer to our release.

5. Quantitative comparison on eval15

table_eval

6. Visual comparison on eval15

figure_eval

7. Visual comparison on DICM

figure_test_dicm

8. Visual comparison on VV and MEF-DS

figure_test_vv_mefds

You might also like...
Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

An official implementation of
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Official code implementation for
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

StyleGAN2 - Official TensorFlow Implementation
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

 Old Photo Restoration (Official PyTorch Implementation)
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Official implementation of
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

Official PyTorch implementation of Spatial Dependency Networks.
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Comments
  • How to create data?

    How to create data?

    I have download datasets, but I have no idea about how to creat data. I read the code and found that I need eval/images eval/targets train/images_aug train/targets to train. Could you please tell me how to perpare these for folder? thanks so much!

    opened by Adolfhill 4
Owner
Qiming Hu
Qiming Hu
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Flexible Option Learning - NeurIPS 2021

Flexible Option Learning This repository contains code for the paper Flexible Option Learning presented as a Spotlight at NeurIPS 2021. The implementa

Martin Klissarov 7 Nov 09, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021