A library for researching neural networks compression and acceleration methods.

Overview

Model Compression Research Package

This package was developed to enable scalable, reusable and reproducable research of weight pruning, quantization and distillation methods with ease.

Installation

To install the library clone the repository and install using pip

git clone https://github.com/IntelLabs/Model-Compression-Research-Package
cd Model-Compression-Research-Package
pip install [-e] .

Add -e flag to install an editable version of the library.

Quick Tour

This package contains implementations of several weight pruning methods, knowledge distillation and quantization-aware training. Here we will show how to easily use those implementations with your existing model implementation and training loop. It is also possible to combine several methods together in the same training process. Please refer to the packages examples.

Weight Pruning

Weight pruning is a method to induce zeros in a models weight while training. There are several methods to prune a model and it is a widely explored research field.

To list the existing weight pruning implemtations in the package use model_compression_research.list_methods(). For example, applying unstructured magnitude pruning while training your model can be done with a few single lines of code

from model_compression_research import IterativePruningConfig, IterativePruningScheduler

training_args = get_training_args()
model = get_model()
dataloader = get_dataloader()
criterion = get_criterion()

# Initialize a pruning configuration and a scheduler and apply it on the model
pruning_config = IterativePruningConfig(
    pruning_fn="unstructured_magnitude",
    pruning_fn_default_kwargs={"target_sparsity": 0.9}
)
pruning_scheduler = IterativePruningScheduler(model, pruning_config)

# Initialize optimizer after initializing the pruning scheduler
optimizer = get_optimizer()

# Training loop
for e in range(training_args.epochs):
    for batch in dataloader:
        inputs, labels = 
        model.train()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # Call pruning scheduler step
        pruning_schduler.step()
        optimizer.zero_grad()

# At the end of training rmeove the pruning parts and get the resulted pruned model
pruning_scheduler.remove_pruning()

For using knowledge distillation with HuggingFace/transformers dedicated transformers Trainer see the implementation of HFTrainerPruningCallback in api_utils.py.

Knowledge Distillation

Model distillation is a method to distill the knowledge learned by a teacher to a smaller student model. A method to do that is to compute the difference between the student's and teacher's output distribution using KL divergence. In this package you can find a simple implementation that does just that.

Assuming that your teacher and student models' outputs are of the same dimension, you can use the implementation in this package as follows:

from model_compression_research import TeacherWrapper, DistillationModelWrapper

training_args = get_training_args()
teacher = get_teacher_trained_model()
student = get_student_model()
dataloader = get_dataloader()
criterion = get_criterion()

# Wrap teacher model with TeacherWrapper and set loss scaling factor and temperature
teacher = TeacherWrapper(teacher, ce_alpha=0.5, ce_temperature=2.0)
# Initialize the distillation model with the student and teacher
distillation_model = DistillationModelWrapper(student, teacher, alpha_student=0.5)

optimizer = get_optimizer()

# Training loop
for e in range(training_args.epochs):
    for batch in dataloader:
        inputs, labels = batch
        distillation_model.train()
        # Calculate student loss w.r.t labels as you usually do
        student_outputs = distillation_model(inputs)
        loss_wrt_labels = criterion(student_outputs, labels)
        # Add knowledge distillation term
        loss = distillation_model.compute_loss(loss_wrt_labels, student_outputs)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

For using knowledge distillation with HuggingFace/transformers see the implementation of HFTeacherWrapper and hf_add_teacher_to_student in api_utils.py.

Quantization-Aware Training

Quantization-Aware Training is a method for training models that will be later quantized at the inference stage, as opposed to other post-training quantization methods where models are trained without any adaptation to the error caused by model quantization.

A similar quantization-aware training method to the one introduced in Q8BERT: Quantized 8Bit BERT generelized to custom models is implemented in this package:

from model_compression_research import QuantizerConfig, convert_model_for_qat

training_args = get_training_args()
model = get_model()
dataloader = get_dataloader()
criterion = get_criterion()

# Initialize quantizer configuration
qat_config = QuantizerConfig()
# Convert model to quantization-aware training model
qat_model = convert_model_for_qat(model, qat_config)

optimizer = get_optimizer()

# Training loop
for e in range(training_args.epochs):
    for batch in dataloader:
        inputs, labels = 
        model.train()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

Papers Implemented in Model Compression Research Package

Methods from the following papers were implemented in this package and are ready for use:

Citation

If you want to cite our paper and library, you can use the following:

@article{zafrir2021prune,
  title={Prune Once for All: Sparse Pre-Trained Language Models},
  author={Zafrir, Ofir and Larey, Ariel and Boudoukh, Guy and Shen, Haihao and Wasserblat, Moshe},
  journal={arXiv preprint arXiv:2111.05754},
  year={2021}
}
@software{zafrir_ofir_2021_5721732,
  author       = {Zafrir, Ofir},
  title        = {Model-Compression-Research-Package by Intel Labs},
  month        = nov,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.1.0},
  doi          = {10.5281/zenodo.5721732},
  url          = {https://doi.org/10.5281/zenodo.5721732}
}
Comments
  • Uniform magnitude pruning implementation problem

    Uniform magnitude pruning implementation problem

    Hello, when the uniform magnitude pruning method is set to "pruning_fn_default_kwargs": { "block_size": 8, "target_sparsity": 0.85 }, The model ends up retaining the parameter 0.75, why?

    opened by LYF915 13
  • Difference between end_pruning_step and policy_end_step

    Difference between end_pruning_step and policy_end_step

    Hi, Could you please clarify the difference between end_pruning_step and policy_end_step in the pruning config file (for example: https://github.com/IntelLabs/Model-Compression-Research-Package/blob/main/examples/transformers/language-modeling/config/iterative_unstructured_magnitude_90_config.json)?

    opened by eldarkurtic 6
  • Issue of max_seq_length in MLM pretraining data preprocessing

    Issue of max_seq_length in MLM pretraining data preprocessing

    Hi, I find that in the functions segment_pair_nsp_process and doc_sentences_process in examples/transformers/language-modeling/dataset_processing.py, the sequence length of the processed data is actually max_seq_length - tokenizer.num_special_tokens_to_add(pair=False) since variable max_seq_length is replaced by this value and have been passed to the tokenizer.prepare_for_model function. Such as user set max_seq_length=128, and the processed data will have a sequence length of 125. I'm not sure is it the standard way of pretraining data preprocessing?

    opened by XinyuYe-Intel 5
  • How to save QAT quantized model?

    How to save QAT quantized model?

    Hi, thank you for your model compression package. I am a little confused about how to save QAT quantized model. Do you have an official website or documentation for this package?

    opened by OctoberKat 4
  • LR scheduler clarification

    LR scheduler clarification

    Hi, Running the Language Modelling example (https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/examples/transformers/language-modeling) ends with a slightly different LR schedule compared to the one presented in the Figure 2.b of the "Prune Once For All" paper. (particularly the warmup phase seems to be a bit different)

    train/learning_rate logged by Weights&Biases: Screenshot 2021-12-20 at 11 25 39

    Learning rate in the paper, Figure 2.b: Screenshot 2021-12-20 at 11 31 35

    opened by eldarkurtic 4
  • Sparse models available for download?

    Sparse models available for download?

    Hello :-)

    I found your Prune-Once-For-All paper very interesting and would like to play with the sparse models that it produced. Are you going to open-source them soon?

    I have noticed you have open-sourced the sparse-pretrained models, but I couldn't find the corresponding models finetuned on downstream tasks (SQuAD, MNLI, QQP, etc.).

    opened by eldarkurtic 2
  • How to interpret hyperparams?

    How to interpret hyperparams?

    Hi, I have a few questions about hyperparams in the Table 6:

    1. Since there are three models: {BERT-Base, BERT-Large, DistilBERT}, how to interpret learning rate for SQuAD with only two values: {1.5e-4, 1.8e-4}?
    2. I assume that for GLUE {1e-4, 1.2e-4, 1.5e-5} are learning rate values for each model respectively. Is this correct?
    3. Since weight decay row has only two values {0, 0.01}, I assume 0 is for all models on SQuAD and 0.01 is for all models on GLUE?
    4. Since warmup ratio row has three values {0, 0.01, 0.1}, I assume these are for each model respectively, no matter which dataset is used?
    5. Does "Epochs {3, 6, 9}" for GLUE mean BERT-base tuned for 3 epochs, BERT-Large for 6 and DistilBERT for 9 epochs?
    opened by eldarkurtic 2
  • Upstream pruning

    Upstream pruning

    Hi! First of all, thanks for open-sourcing your code for the "Prune Once for All" paper. I would like to ask a few questions:

    1. Are you planning to release your teacher model for upstream task? I have noticed that at https://huggingface.co/Intel , only the sparse checkpoints have been released. I would like to run some experiments with your compression package.
    2. From the published scripts, I have noticed that you have been using only English Wikipedia dataset for pruning at upstream tasks (MLM and NSP) but the bert-base-uncased model you use as a starting point is pre-trained on BookCorpus and English Wikipedia. Is there any specific reason why you haven't included BookCorpus dataset too?
    opened by eldarkurtic 1
  • Code analysis identified several places where objects were either not

    Code analysis identified several places where objects were either not

    declared or were declared as None which could result in an unsupported operation error from python.

    Change descriptions:

    • added forward declarations of 4 variables in both the modeling_bert and modeling_roberta
    • removed assignment of all_hidden_states to None if output_hidden_states is none
    • removed assignment of all_attentions to None if output_attentions is none
    • removed assignment of all_self_attentions to None if output_attentions is None
    • removed assignment of all_cross_attentions to Non if output_attentions is None
    opened by michaelbeale-IL 0
  • Fix distillation of different HF/transformers models

    Fix distillation of different HF/transformers models

    Until now, if the teacher had a different signature than the student, transformers.trainer would delete the input that is not matching to the student's signature leading to the teacher not getting all the input it needs.

    For example, training a DistilBERT student with a BERT-Base teacher will not work properly since BERT-Base requires token_type_ids which DistilBERT doesn't require. The trainer deletes the token_type_ids from the input and BERT teacher would get an all zeros token type ids leading to wrong predictions.

    This PR fixes this issue.

    opened by ofirzaf 0
  • Small optimizations

    Small optimizations

    • Implement fast threshold compute: Execute best threshold compute according to target hardware (cpu/cuda) and implement fast compute using histogram
    • Refactor block pruning computation: move computation to utils and reuse in the rest of the pruning methods
    opened by ofirzaf 0
Releases(v0.1.0)
  • v0.1.0(Nov 23, 2021)

    First release of Intel Labs' Model Compression Research Package, the current version includes model compression methods from previous published papers and our own research papers implementations:

    • Pruning, quantization and knowledge distillation methods and schedulers that may fit various PyTorch models out-of-the-box
    • Integration to HuggingFace/transformers library for most of the available methods
    • Various examples showing how to use the library
    • Prune Once for All: Sparse Pre-Trained Language Models reproduction guide and scripts
    Source code(tar.gz)
    Source code(zip)
Owner
Intel Labs
Intel Labs
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Augmentation for Single-Image-Super-Resolution

SRAugmentation Augmentation for Single-Image-Super-Resolution Implimentation CutBlur Cutout CutMix Cutup CutMixup Blend RGBPermutation Identity OneOf

Yubo 6 Jun 27, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022