Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Overview

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad El Hanafi, Takashi Sozu, Kentaro Sakamaki "Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study" Statistics in Medicine 202x; (doi:xxxxx)

How to Setup

We recommend using Linux or WSL on Windows, because the Ray package in Python is more stable on Linux. For example, in Ubuntu 20.04 (Python 3.8 was already installed), I was able to install the necessary packages with the following commands.

Install Ray

sudo apt update
sudo apt upgrade
sudo apt install python3-pip
sudo pip3 install tensorflow numpy pandas gym
sudo apt install cmake
sudo pip3 install -U ray
sudo pip3 install 'ray[rllib]'

Install R and RPy2

echo -e "\n## For R package"  | sudo tee -a /etc/apt/sources.list
echo "deb https://cloud.r-project.org/bin/linux/ubuntu $(lsb_release -cs)-cran40/" | sudo tee -a /etc/apt/sources.list
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E298A3A825C0D65DFD57CBB651716619E084DAB9
sudo apt update
sudo apt install make g++ r-base
sudo apt install libxml2-dev libssl-dev libcurl4-openssl-dev
sudo pip3 install rpy2

Install DoseFinding package in R

install.packages('DoseFinding')

How to Use

Change simulation settings

To change the simulation settings, it is necessary to understand MCPMod/envs/MCPModEnv.py. This part is a bit difficult because of the interaction between R and Python. Therefore, we have a plan to create an R package to use our method easily.

Obtain adaptive allocation rule

To obtain RL-MAE by learning, please run learn_RL-MAE.py like:

nohup python3 learn_RL-MAE.py > std.log 2> err.log &

To obtain other RL-methods, please change the reward_type in line 25 in learn_RL-MAE.py to something like score_TD, then run the modified file.

When we used c2-standard-4(vCPUx4, RAM16GB) on Google Cloud Platform, the learning was completed within a day.

Simulate single trial

After the learning, we will obtain a checkpoint in ~/ray_results/PPO_MCPMod-v0_[datetime]-[xxx]/checkpoint-[yyy]/. To simulate single trial using the obtained rule, please move the checkpoint files (checkpoint and checkpoint.tune_metadata) in the directory to checkpoint/ in this repository, and rename the files as you like (see the example files). Then, please run simulate-single-trial_RL-MAE.py like:

python3 simulate-single-trial_RL-MAE.py
Owner
Kentaro Matsuura
Kentaro Matsuura
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search

generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu

Hua Tong 18 Sep 21, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023