[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Related tags

Deep Learninggrabnel
Overview

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021

overall-pipeline

This repository contains the official implementation of GRABNEL, a Bayesian optimisation-based adversarial agent to conduct adversarial attacks on graph classification models. GRABNEL currently supports various topological attacks, such as via edge flipping (incl. both addition or deletion), node injection and edge swapping. We also include implementations of a number of baseline methods including random search, genetic algorithm [1] and a gradient-based white-box attacker (available on some victim model choices). We also implement a number of victim models, namely:

  • Graph convolution networks (GCN) [2]
  • Graph isomorphism networks (GIN) [3]
  • ChebyGIN [4] (only for MNIST-75sp task)
  • Graph U-Net [5]
  • S2V (only for the ER Graph task in [1])

For details please take a look at our paper: abstract / pdf.

The code repository also contains instructions for the TU datasets [6] in the DGL framework, as well as the MNIST-75sp dataset in [4]. For the Twitter dataset we used for node injection tasks, we are not authorised to redistribute the dataset and you have to ask for permission from the authors of [7] directly.

If you find our work to be useful for your research, please consider citing us:

Wan, Xingchen, Henry Kenlay, Binxin Ru, Arno Blaas, Michael A. Osborne, and Xiaowen Dong. "Adversarial Attacks on Graph Classifiers via Bayesian Optimisation." In Thirty-Fifth Conference on Neural Information Processing Systems. 2021.

Or in bibtex:

@inproceedings{wan2021adversarial,
  title={Adversarial Attacks on Graph Classifiers via Bayesian Optimisation},
  author={Wan, Xingchen and Kenlay, Henry and Ru, Binxin and Blaas, Arno and Osborne, Michael and Dong, Xiaowen},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

Instructions for use

  1. Install the required packages in requirements.txt

For TU Dataset(s):

  1. Train a selected architecture (GCN/GIN). Taking an example of GCN training on the PROTEINS dataset. By default DGL will download the requested dataset under ~/.dgl directory. If it throws an error, you might have to manually download the dataset and add to the appropriate directory.
python3 train_model.py --dataset PROTEINS --model gcn --seed $YOUR_SEED 

This by default deposits the trained victim model under src/output/models and the training log under src/output/training_logs.

  1. Evaluate the victim model on a separate test set. Run
python3 evaluate_model.py --dataset PROTEINS --seed $YOUR_SEED  --model gcn

This by default will create evaluation logs under src/output/evaluation_logs.

  1. Run the attack algorithm.
cd scripts && python3 run_bo_tu.py --dataset PROTEINS --save_path $YOUR_SAVE_PATH --model_path $YOUR_MODEL_PATH --seed $YOUR_SEED --model gcn

With no method specified, the script runs GRABNEL by default. You may use the -m to specify if, for example, you'd like to run one of the baseline methods mentioned above instead.

For the MNIST-75sp task For MNIST-75sp, we use the pre-trained model released by the authors of [4] as the victim model, so there is no need to train a victim model separately (unless you wish to).

  1. Generate the MNIST-75sp dataset. Here we use an adapted script from [4], but added a converter to ensure that the dataset generated complies with the rest of our code base (DGL-compliant, etc). You need to download the MNIST dataset beforehand (or use the torchvision download facility. Either is fine)
cd data && python3 build_mnist.py -D mnist -d $YOUR_DATA_PATH -o $YOUR_SAVE_PATH  

The output should be a pickle file mnist_75sp.p. Place it under $PROJECT_ROOT/src/data/

  1. Download the pretrained model from https://github.com/bknyaz/graph_attention_pool. The pretrained checkpointed model we use is checkpoint_mnist-75sp_139255_epoch30_seed0000111.pth.tar. Deposit the model under src/output/models

  2. Run attack algorithm.

cd scripts && python3 run_bo_image_classification.py --dataset mnist

References

[1] Dai, Hanjun, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. "Adversarial attack on graph structured data." In International conference on machine learning, pp. 1115-1124. PMLR, 2018.

[2] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

[3] Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. "How powerful are graph neural networks?." arXiv preprint arXiv:1810.00826 (2018).

[4] Knyazev, Boris, Graham W. Taylor, and Mohamed R. Amer. "Understanding attention and generalization in graph neural networks." NeurIPS (2019).

[5] Gao, Hongyang, and Shuiwang Ji. "Graph u-nets." In international conference on machine learning, pp. 2083-2092. PMLR, 2019.

[6] Morris, Christopher, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann. "Tudataset: A collection of benchmark datasets for learning with graphs." arXiv preprint arXiv:2007.08663 (2020).

[7] Vosoughi, Soroush, Deb Roy, and Sinan Aral. "The spread of true and false news online." Science 359, no. 6380 (2018): 1146-1151.

Acknowledgements

The repository builds, directly or indirectly, on multiple open-sourced code bases available online. The authors would like to express their gratitudes towards the maintainers of the following repos:

  1. https://github.com/Hanjun-Dai/graph_adversarial_attack
  2. https://github.com/DSE-MSU/DeepRobust
  3. https://github.com/HongyangGao/Graph-U-Nets
  4. https://github.com/xingchenwan/nasbowl
  5. The Deep graph library team
  6. The grakel team (https://ysig.github.io/GraKeL/0.1a8/)
Owner
Xingchen Wan
PhD Student in Machine Learning @ University of Oxford
Xingchen Wan
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
a minimal terminal with python 😎😉

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023