This repository collects 100 papers related to negative sampling methods.

Overview

Negative-Sampling-Paper

This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommendation Systems (RS), Computer Vision (CV),Natural Language Processing (NLP) and Contrastive Learning (CL).

Existing negative sampling methods can be roughly divided into five categories: Static Negative Sampling, Hard Negative Sampling, Adversarial Sampling, Graph-based Sampling and Additional data enhanced Sampling.

Category

Static Negative Sampling

  • BPR: Bayesian Personalized Ranking from Implicit Feedback. UAI(2009) [RS] [PDF]

  • Real-Time Top-N Recommendation in Social Streams. RecSys(2012) [RS] [PDF]

  • Distributed Representations of Words and Phrases and their Compositionality. NIPS(2013) [NLP] [PDF]

  • word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method. arXiv(2014) [NLP] [PDF]

  • Deepwalk: Online learning of social representations. KDD(2014) [GRL] [PDF]

  • LINE: Large-scale Information Network Embedding. WWW(2015) [GRL] [PDF]

  • Context- and Content-aware Embeddings for Query Rewriting in Sponsored Search. SIGIR(2015) [NLP] [PDF]

  • node2vec: Scalable Feature Learning for Networks. KDD(2016) [NLP] [PDF]

  • Fast Matrix Factorization for Online Recommendation with Implicit Feedback. SIGIR(2016) [RS] [PDF]

  • Word2vec applied to Recommendation: Hyperparameters Matter. RecSys(2018) [RS] [PDF]

  • General Knowledge Embedded Image Representation Learning. TMM(2018) [CV] [PDF]

  • Alleviating Cold-Start Problems in Recommendation through Pseudo-Labelling over Knowledge Graph. WSDM(2021) [RS] [PDF]

Hard Negative Sampling

  • Example-based learning for view-based human face detection. TPAMI(1998) [CV] [PDF]

  • Adaptive Importance Sampling to Accelerate Training of a Neural Probabilistic Language Model. T-NN(2008) [NLP] [PDF]

  • Optimizing Top-N Collaborative Filtering via Dynamic Negative Item Sampling. SIGIR(2013) [RS] [PDF]

  • Bootstrapping Visual Categorization With Relevant Negatives. TMM(2013) [CV] [PDF]

  • Improving Pairwise Learning for Item Recommendation from Implicit Feedback. WSDM(2014) [RS] [PDF]

  • Improving Latent Factor Models via Personalized Feature Projection for One Class Recommendation. CIKM(2015) [RS] [PDF]

  • Noise-Contrastive Estimation for Answer Selection with Deep Neural Networks. CIKM(2016) [NLP] [PDF]

  • RankMBPR: Rank-aware Mutual Bayesian Personalized Ranking for Item Recommendation. WAIM(2016) [RS] [PDF]

  • Training Region-Based Object Detectors With Online Hard Example Mining. CVPR(2016) [CV] [PDF]

  • Hard Negative Mining for Metric Learning Based Zero-Shot Classification. ECCV(2016) [ML] [PDF]

  • Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining. Sensors(2017) [CV] [PDF]

  • WalkRanker: A Unified Pairwise Ranking Model with Multiple Relations for Item Recommendation. AAAI(2018) [RS] [PDF]

  • Bootstrapping Entity Alignment with Knowledge Graph Embedding. IJCAI(2018) [KGE] [PDF]

  • Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors. CVPR(2018) [CV] [PDF]

  • NSCaching: Simple and Efficient Negative Sampling for Knowledge Graph Embedding. ICDE(2019) [KGE] [PDF]

  • Meta-Transfer Learning for Few-Shot Learning. CVPR(2019) [CV] [PDF]

  • ULDor: A Universal Lesion Detector for CT Scans with Pseudo Masks and Hard Negative Example Mining. ISBI(2019) [CV] [PDF]

  • Distributed representation learning via node2vec for implicit feedback recommendation. NCA(2020) [NLP] [PDF]

  • Simplify and Robustify Negative Sampling for Implicit Collaborative Filtering. arXiv(2020) [RS] [PDF]

  • Hard Negative Mixing for Contrastive Learning. arXiv(2020) [CL] [PDF]

  • Bundle Recommendation with Graph Convolutional Networks. SIGIR(2020) [RS] [PDF]

  • Supervised Contrastive Learning. NIPS(2020) [CL] [PDF]

  • Curriculum Meta-Learning for Next POI Recommendation. KDD(2021) [RS] [PDF]

  • Boosting the Speed of Entity Alignment 10×: Dual Attention Matching Network with Normalized Hard Sample Mining. WWW(2021) [KGE] [PDF]

  • Hard-Negatives or Non-Negatives? A Hard-Negative Selection Strategy for Cross-Modal Retrieval Using the Improved Marginal Ranking Loss. ICCV(2021) [CV] [PDF]

Adversarial Sampling

  • Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks. NIPS(2015) [CV] [PDF]

  • IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models. SIGIR(2017) [IR] [PDF]

  • SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. AAAI(2017) [NLP] [PDF]

  • KBGAN: Adversarial Learning for Knowledge Graph Embeddings. NAACL(2018) [KGE] [PDF]

  • Neural Memory Streaming Recommender Networks with Adversarial Training. KDD(2018) [RS] [PDF]

  • GraphGAN: Graph Representation Learning with Generative Adversarial Nets. AAAI(2018) [GRL] [PDF]

  • CFGAN: A Generic Collaborative Filtering Framework based on Generative Adversarial Networks. CIKM(2018) [RS] [PDF]

  • Adversarial Contrastive Estimation. ACL(2018) [NLP] [PDF]

  • Incorporating GAN for Negative Sampling in Knowledge Representation Learning. AAAI(2018) [KGE] [PDF]

  • Exploring the potential of conditional adversarial networks for optical and SAR image matching. IEEE J-STARS(2018) [CV] [PDF]

  • Deep Adversarial Metric Learning. CVPR(2018) [CV] [PDF]

  • Adversarial Detection with Model Interpretation. KDD(2018) [ML] [PDF]

  • Adversarial Sampling and Training for Semi-Supervised Information Retrieval. WWW(2019) [IR] [PDF]

  • Deep Adversarial Social Recommendation. IJCAI(2019) [RS] [PDF]

  • Adversarial Learning on Heterogeneous Information Networks. KDD(2019) [HIN] [PDF]

  • Regularized Adversarial Sampling and Deep Time-aware Attention for Click-Through Rate Prediction. CIKM(2019) [RS] [PDF]

  • Adversarial Knowledge Representation Learning Without External Model. IEEE Access(2019) [KGE] [PDF]

  • Adversarial Binary Collaborative Filtering for Implicit Feedback. AAAI(2019) [RS] [PDF]

  • ProGAN: Network Embedding via Proximity Generative Adversarial Network. KDD(2019) [GRL] [PDF]

  • Generating Fluent Adversarial Examples for Natural Languages. ACL(2019) [NLP] [PDF]

  • IPGAN: Generating Informative Item Pairs by Adversarial Sampling. TNLLS(2020) [RS] [PDF]

  • Contrastive Learning with Adversarial Examples. arXiv(2020) [CL] [PDF]

  • PURE: Positive-Unlabeled Recommendation with Generative Adversarial Network. KDD(2021) [RS] [PDF]

  • Negative Sampling for Knowledge Graph Completion Based on Generative Adversarial Network. ICCCI(2021) [KGE] [PDF]

  • Synthesizing Adversarial Negative Responses for Robust Response Ranking and Evaluation. arXiv(2021) [NLP] [PDF]

  • Adversarial Feature Translation for Multi-domain Recommendation. KDD(2021) [RS] [PDF]

  • Adversarial training regularization for negative sampling based network embedding. Information Sciences(2021) [GRL] [PDF]

  • Adversarial Caching Training: Unsupervised Inductive Network Representation Learning on Large-Scale Graphs. TNNLS(2021) [GRL] [PDF]

  • A Robust and Generalized Framework for Adversarial Graph Embedding. arxiv(2021) [GRL] [PDF]

  • Instance-wise Hard Negative Example Generation for Contrastive Learning in Unpaired Image-to-Image Translation. ICCV(2021) [CV] [PDF]

Graph-based Sampling

  • ACRec: a co-authorship based random walk model for academic collaboration recommendation. WWW(2014) [RS] [PDF]

  • GNEG: Graph-Based Negative Sampling for word2vec. ACL(2018) [NLP] [PDF]

  • Graph Convolutional Neural Networks for Web-Scale Recommender Systems. KDD(2018) [RS] [PDF]

  • SamWalker: Social Recommendation with Informative Sampling Strategy. WWW(2019) [RS] [PDF]

  • Understanding Negative Sampling in Graph Representation Learning. KDD(2020) [GRL] [PDF]

  • Reinforced Negative Sampling over Knowledge Graph for Recommendation. WWW(2020) [RS] [PDF]

  • MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems. KDD(2021) [RS] [PDF]

  • SamWalker++: recommendation with informative sampling strategy. TKDE(2021) [RS] [PDF]

  • DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation with Relational GNN. CIKM(2021) [RS] [PDF]

Additional data enhanced Sampling

  • Leveraging Social Connections to Improve Personalized Ranking for Collaborative Filtering. CIKM(2014) [RS] [PDF]

  • Social Recommendation with Strong and Weak Ties. CIKM(2016) [RS] [PDF]

  • Bayesian Personalized Ranking with Multi-Channel User Feedback. RecSys(2016) [RS] [PDF]

  • Joint Geo-Spatial Preference and Pairwise Ranking for Point-of-Interest Recommendation. ICTAI(2017) [RS] [PDF]

  • A Personalised Ranking Framework with Multiple Sampling Criteria for Venue Recommendation. CIKM(2017) [RS] [PDF]

  • An Improved Sampling for Bayesian Personalized Ranking by Leveraging View Data. WWW(2018) [RS] [PDF]

  • Reinforced Negative Sampling for Recommendation with Exposure Data. IJCAI(2019) [RS] [PDF]

  • Geo-ALM: POI Recommendation by Fusing Geographical Information and Adversarial Learning Mechanism. IJCAI(2019) [RS] [PDF]

  • Bayesian Deep Learning with Trust and Distrust in Recommendation Systems. WI(2019) [RS] [PDF]

  • Socially-Aware Self-Supervised Tri-Training for Recommendation. arXiv(2021) [RS] [PDF]

  • DGCN: Diversified Recommendation with Graph Convolutional Networks. WWW(2021) [RS] [PDF]

Future Outlook

False Negative Problem

  • Incremental False Negative Detection for Contrastive Learning. arXiv(2021) [CL] [PDF]

  • Graph Debiased Contrastive Learning with Joint Representation Clustering. IJCAI(2021) [GRL & CL] [PDF]

  • Relation-aware Graph Attention Model With Adaptive Self-adversarial Training. AAAI(2021) [KGE] [PDF]

Curriculum Learning

  • On The Power of Curriculum Learning in Training Deep Networks. ICML(2016) [CV] [PDF]

  • Graph Representation with Curriculum Contrastive Learning. IJCAI(2021) [GRL & CL] [PDF]

Negative Sampling Ratio

  • Are all negatives created equal in contrastive instance discrimination. arXiv(2020) [CL] [PDF]

  • SimpleX: A Simple and Strong Baseline for Collaborative Filtering. CIKM(2021) [RS] [PDF]

  • Rethinking InfoNCE: How Many Negative Samples Do You Need. arXiv(2021) [CL] [PDF]

Debiased Sampling

  • Debiased Contrastive Learning. NIPS(2020) [CL] [PDF]

  • Contrastive Learning for Debiased Candidate Generation in Large-Scale Recommender Systems. KDD(2021) [RS] [PDF]

Non-Sampling

  • Beyond Hard Negative Mining: Efficient Detector Learning via Block-Circulant Decomposition. ICCV(2013) [CV] [PDF]

  • Efficient Heterogeneous Collaborative Filtering without Negative Sampling for Recommendation. AAAI(2020) [RS] [PDF]

  • Efficient Non-Sampling Knowledge Graph Embedding. WWW(2021) [KGE] [PDF]

Owner
RUCAIBox
An enthusiastic group that aims to create beautiful things with AI
RUCAIBox
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022