Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Overview

Neural Circuit Policies Enabling Auditable Autonomy

DOI

Online access via SharedIt

Neural Circuit Policies (NCPs) are designed sparse recurrent neural networks based on the LTC neuron and synapse model loosely inspired by the nervous system of the organism C. elegans. This page is a description of the Keras (TensorFlow 2 package) reference implementation of NCPs. For reproducibility materials of the paper see the corresponding subpage.

alt

Installation

Requirements:

  • Python 3.6
  • TensorFlow 2.4
  • (Optional) PyTorch 1.7
pip install keras-ncp

Update January 2021: Experimental PyTorch support added

With keras-ncp version 2.0 experimental PyTorch support is added. There is an example on how to use the PyTorch binding in the examples folder and a Colab notebook linked below. Note that the support is currently experimental, which means that it currently misses some functionality (e.g., no plotting, no irregularly sampled time-series,etc. ) and might be subject to breaking API changes in future updates.

Breaking API changes between 1.x and 2.x

The TensorFlow bindings have been moved to the tf submodule. Thus the only breaking change regarding the TensorFlow/Keras bindings concern the import

# Import shared modules for wirings, datasets,...
import kerasncp as kncp
# Import framework-specific binding
from kerasncp.tf import LTCCell      # Use TensorFlow binding
(from kerasncp.torch import LTCCell  # Use PyTorch binding)

Colab notebooks

We have created a few Google Colab notebooks for an interactive introduction to the package

Usage: the basics

The package is composed of two main parts:

  • The LTC model as a tf.keras.layers.Layer or torch.nn.Module RNN cell
  • An wiring architecture for the LTC cell above

The wiring could be fully-connected (all-to-all) or sparsely designed using the NCP principles introduced in the paper. As the LTC model is expressed in the form of a system of ordinary differential equations in time, any instance of it is inherently a recurrent neural network (RNN).

Let's create a LTC network consisting of 8 fully-connected neurons that receive a time-series of 2 input features as input. Moreover, we define that 1 of the 8 neurons acts as the output (=motor neuron):

from tensorflow import keras
import kerasncp as kncp
from kerasncp.tf import LTCCell

wiring = kncp.wirings.FullyConnected(8, 1)  # 8 units, 1 motor neuron
ltc_cell = LTCCell(wiring) # Create LTC model

model = keras.Sequential(
    [
        keras.layers.InputLayer(input_shape=(None, 2)), # 2 input features
        keras.layers.RNN(ltc_cell, return_sequences=True),
    ]
)
model.compile(
    optimizer=keras.optimizers.Adam(0.01), loss='mean_squared_error'
)

We can then fit this model to a generated sine wave, as outlined in the tutorials (open in Google Colab).

alt

More complex architectures

We can also create some more complex NCP wiring architecture. Simply put, an NCP is a 4-layer design vaguely inspired by the wiring of the C. elegans worm. The four layers are sensory, inter, command, and motor layer, which are sparsely connected in a feed-forward fashion. On top of that, the command layer realizes some recurrent connections. As their names already indicate, the sensory represents the input and the motor layer the output of the network.

We can also customize some of the parameter initialization ranges, although the default values should work fine for most cases.

ncp_wiring = kncp.wirings.NCP(
    inter_neurons=20,  # Number of inter neurons
    command_neurons=10,  # Number of command neurons
    motor_neurons=5,  # Number of motor neurons
    sensory_fanout=4,  # How many outgoing synapses has each sensory neuron
    inter_fanout=5,  # How many outgoing synapses has each inter neuron
    recurrent_command_synapses=6,  # Now many recurrent synapses are in the
    # command neuron layer
    motor_fanin=4,  # How many incoming synapses has each motor neuron
)
ncp_cell = LTCCell(
    ncp_wiring,
    initialization_ranges={
        # Overwrite some of the initialization ranges
        "w": (0.2, 2.0),
    },
)

We can then combine the NCP cell with arbitrary keras.layers, for instance to build a powerful image sequence classifier:

height, width, channels = (78, 200, 3)

model = keras.models.Sequential(
    [
        keras.layers.InputLayer(input_shape=(None, height, width, channels)),
        keras.layers.TimeDistributed(
            keras.layers.Conv2D(32, (5, 5), activation="relu")
        ),
        keras.layers.TimeDistributed(keras.layers.MaxPool2D()),
        keras.layers.TimeDistributed(
            keras.layers.Conv2D(64, (5, 5), activation="relu")
        ),
        keras.layers.TimeDistributed(keras.layers.MaxPool2D()),
        keras.layers.TimeDistributed(keras.layers.Flatten()),
        keras.layers.TimeDistributed(keras.layers.Dense(32, activation="relu")),
        keras.layers.RNN(ncp_cell, return_sequences=True),
        keras.layers.TimeDistributed(keras.layers.Activation("softmax")),
    ]
)
model.compile(
    optimizer=keras.optimizers.Adam(0.01),
    loss='sparse_categorical_crossentropy',
)
@article{lechner2020neural,
  title={Neural circuit policies enabling auditable autonomy},
  author={Lechner, Mathias and Hasani, Ramin and Amini, Alexander and Henzinger, Thomas A and Rus, Daniela and Grosu, Radu},
  journal={Nature Machine Intelligence},
  volume={2},
  number={10},
  pages={642--652},
  year={2020},
  publisher={Nature Publishing Group}
}
You might also like...
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Provided is code that demonstrates the training and evaluation of the work presented in the paper:
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

This repository allows you to anonymize sensitive information in images/videos. The solution is fully compatible with the DL-based training/inference solutions that we already published/will publish for Object Detection and Semantic Segmentation. Repository for
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

Releases(v2.0.0)
Owner
PhD candidate at IST Austria. Working on Machine Learning, Robotics, and Verification
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022