Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Overview

Legged Robots that Keep on Learning

Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, which contains code for training a simulated or real A1 quadrupedal robot to imitate various reference motions, pre-trained policies, and example training code for learning the policies.

animated

Project page: https://sites.google.com/berkeley.edu/fine-tuning-locomotion

Getting Started

  • Install MPC extension (Optional) python3 setup.py install --user

Install dependencies:

  • Install MPI: sudo apt install libopenmpi-dev
  • Install requirements: pip3 install -r requirements.txt

Training Policies in Simulation

To train a policy, run the following command:

python3 motion_imitation/run_sac.py \
--mode train \
--motion_file [path to reference motion, e.g., motion_imitation/data/motions/pace.txt] \
--int_save_freq 1000 \
--visualize
  • --mode can be either train or test.
  • --motion_file specifies the reference motion that the robot is to imitate (not needed for training a reset policy). motion_imitation/data/motions/ contains different reference motion clips.
  • --int_save_freq specifies the frequency for saving intermediate policies every n policy steps.
  • --visualize enables visualization, and rendering can be disabled by removing the flag.
  • --train_reset trains a reset policy, otherwise imitation policies will be trained according to the reference motions passed in.
  • adding --use_redq uses REDQ, otherwise vanilla SAC will be used.
  • the trained model, videos, and logs will be written to output/.

Evaluating and/or Fine-Tuning Trained Policies

We provide checkpoints for the pre-trained models used in our experiments in motion_imitation/data/policies/.

Evaluating a Policy in Simulation

To evaluate individual policies, run the following command:

python3 motion_imitation/run_sac.py \
--mode test \
--motion_file [path to reference motion, e.g., motion_imitation/data/motions/pace.txt] \
--model_file [path to imitation model checkpoint, e.g., motion_imitation/data/policies/pace.ckpt] \
--num_test_episodes [# episodes to test] \
--use_redq \
--visualize
  • --motion_file specifies the reference motion that the robot is to imitate motion_imitation/data/motions/ contains different reference motion clips.
  • --model_file specifies specifies the .ckpt file that contains the trained model motion_imitation/data/policies/ contains different pre-trained models.
  • --num_test_episodes specifies the number of episodes to run evaluation for
  • --visualize enables visualization, and rendering can be disabled by removing the flag.

Autonomous Training using a Pre-Trained Reset Controller

To fine-tune policies autonomously, add a path to a trained reset policy (e.g., motion_imitation/data/policies/reset.ckpt) and a (pre-trained) imitation policy.

python3 motion_imitation/run_sac.py \
--mode train \
--motion_file [path to reference motion] \
--model_file [path to imitation model checkpoint] \
--getup_model_file [path to reset model checkpoint] \
--use_redq \
--int_save_freq 100 \
--num_test_episodes 20 \
--finetune \
--real_robot
  • adding --finetune performs fine-tuning, otherwise hyperparameters for pre-training will be used.
  • adding --real_robot will run training on the real A1 (see below to install necessary packages for running the real A1). If this is omitted, training will run in simulation.

To run two SAC trainers, one learning to walk forward and one backward, add a reference and checkpoint for another policy and use the multitask flag.

python motion_imitation/run_sac.py \
--mode train \
--motion_file motion_imitation/data/motions/pace.txt \
--backward_motion_file motion_imitation/data/motions/pace_backward.txt \
--model_file [path to forward imitation model checkpoint] \
--backward_model_file [path to backward imitation model checkpoint] \
--getup_model_file [path to reset model checkpoint] \
--use_redq \
--int_save_freq 100 \
--num_test_episodes 20 \
--real_robot \
--finetune \
--multitask

Running MPC on the real A1 robot

Since the SDK from Unitree is implemented in C++, we find the optimal way of robot interfacing to be via C++-python interface using pybind11.

Step 1: Build and Test the robot interface

To start, build the python interface by running the following: bash cd third_party/unitree_legged_sdk mkdir build cd build cmake .. make Then copy the built robot_interface.XXX.so file to the main directory (where you can see this README.md file).

Step 2: Setup correct permissions for non-sudo user

Since the Unitree SDK requires memory locking and high-priority process, which is not usually granted without sudo, add the following lines to /etc/security/limits.conf:


   
     soft memlock unlimited

    
      hard memlock unlimited

     
       soft nice eip

      
        hard nice eip

      
     
    
   

You may need to reboot the computer for the above changes to get into effect.

Step 3: Test robot interface.

Test the python interfacing by running: 'sudo python3 -m motion_imitation.examples.test_robot_interface'

If the previous steps were completed correctly, the script should finish without throwing any errors.

Note that this code does not do anything on the actual robot.

Running the Whole-body MPC controller

To see the whole-body MPC controller in sim, run: bash python3 -m motion_imitation.examples.whole_body_controller_example

To see the whole-body MPC controller on the real robot, run: bash sudo python3 -m motion_imitation.examples.whole_body_controller_robot_example

Owner
Laura Smith
Laura Smith
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
This program automatically runs Python code copied in clipboard

CopyRun This program runs Python code which is copied in clipboard WARNING!! USE AT YOUR OWN RISK! NO GUARANTIES IF ANYTHING GETS BROKEN. DO NOT COPY

vertinski 4 Sep 10, 2021
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022