MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

Related tags

Deep LearningMVSDF
Overview

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

Intro

This is the official implementation for the ICCV 2021 paper Learning Signed Distance Field for Multi-view Surface Reconstruction

In this work, we introduce a novel neural surface reconstruction framework that leverages the knowledge of stereo matching and feature consistency to optimize the implicit surface representation. More specifically, we apply a signed distance field (SDF) and a surface light field to represent the scene geometry and appearance respectively. The SDF is directly supervised by geometry from stereo matching, and is refined by optimizing the multi-view feature consistency and the fidelity of rendered images. Our method is able to improve the robustness of geometry estimation and support reconstruction of complex scene topologies. Extensive experiments have been conducted on DTU, EPFL and Tanks and Temples datasets. Compared to previous state-of-the-art methods, our method achieves better mesh reconstruction in wide open scenes without masks as input.

How to Use

Environment Setup

The code is tested in the following environment (manually installed packages only). The newer version of the packages should also be fine.

dependencies:
  - cudatoolkit=10.2.89
  - numpy=1.19.2
  - python=3.8.8
  - pytorch=1.7.1
  - tqdm=4.60.0
  - pip:
    - cvxpy==1.1.12
    - gputil==1.4.0
    - imageio==2.9.0
    - open3d==0.13.0
    - opencv-python==4.5.1.48
    - pyhocon==0.3.57
    - scikit-image==0.18.3
    - scikit-learn==0.24.2
    - trimesh==3.9.13
    - pybind11==2.9.0

Data Preparation

Download preprocessed DTU datasets from here

Training

cd code
python training/exp_runner.py --data_dir <DATA_DIR>/scan<SCAN>/imfunc4 --batch_size 8 --nepoch 1800 --expname dtu_<SCAN>

The results will be written in exps/mvsdf_dtu_ .

Trained Models

Download trained models and put them in exps folder. This set of models achieve the following results.

Chamfer PSNR
24 0.846 24.67
37 1.894 20.15
40 0.895 25.15
55 0.435 23.19
63 1.067 26.24
65 0.903 26.9
69 0.746 26.54
83 1.241 25.15
97 1.009 25.71
105 1.320 26.48
106 0.867 28.81
110 0.842 23.16
114 0.340 27.51
118 0.472 28.46
122 0.466 27.71
Mean 0.890 25.72

Testing

python evaluation/eval.py --data_dir <DATA_DIR>/scan<SCAN>/imfunc4 --expname dtu_<SCAN> [--eval_rendering]

add --eval_rendering flag to generate and evaluate rendered images. The results will be written in evals/mvsdf_dtu_ .

Trimming

cd mesh_cut
python setup.py build_ext -i  # compile
python mesh_cut.py 
    
    
      [--thresh 15 --smooth 10]

    
   

Note that this part of code can only be used for research purpose. Please refer to mesh_cut/IBFS/license.txt

Evaluation

Apart from the official implementation, you can also use my re-implemented evaluation script.

Citation

If you find our work useful in your research, please kindly cite

@article{zhang2021learning,
	title={Learning Signed Distance Field for Multi-view Surface Reconstruction},
	author={Zhang, Jingyang and Yao, Yao and Quan, Long},
	journal={International Conference on Computer Vision (ICCV)},
	year={2021}
}
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022