Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Overview

Dual-Level Collaborative Transformer for Image Captioning

This repository contains the reference code for the paper Dual-Level Collaborative Transformer for Image Captioning.

Experiment setup

please refer to m2 transformer

Data preparation

  • Annotation. Download the annotation file annotation.zip. Extarct and put it in the project root directory.
  • Feature. You can download our ResNeXt-101 feature (hdf5 file) here. Acess code: jcj6.
  • evaluation. Download the evaluation tools here. Acess code: jcj6. Extarct and put it in the project root directory.

There are five kinds of keys in our .hdf5 file. They are

  • ['%d_features' % image_id]: region features (N_regions, feature_dim)
  • ['%d_boxes' % image_id]: bounding box of region features (N_regions, 4)
  • ['%d_size' % image_id]: size of original image (for normalizing bounding box), (2,)
  • ['%d_grids' % image_id]: grid features (N_grids, feature_dim)
  • ['%d_mask' % image_id]: geometric alignment graph, (N_regions, N_grids)

We extract feature with the code in grid-feats-vqa.

The first three keys can be obtained when extracting region features with extract_region_feature.py. The forth key can be obtained when extracting grid features with code in grid-feats-vqa. The last key can be obtained with align.ipynb

Training

python train.py --exp_name dlct --batch_size 50 --head 8 --features_path ./data/coco_all_align.hdf5 --annotation annotation --workers 8 --rl_batch_size 100 --image_field ImageAllFieldWithMask --model DLCT --rl_at 17 --seed 118

Evaluation

python eval.py --annotation annotation --workers 4 --features_path ./data/coco_all_align.hdf5 --model_path path_of_model_to_eval --model DLCT --image_field ImageAllFieldWithMask --grid_embed --box_embed --dump_json gen_res.json --beam_size 5

Important args:

  • --features_path path to hdf5 file
  • --model_path
  • --dump_json dump generated captions to

Pretrained model is available here. Acess code: jcj6. By evaluating the pretrained model, you will get

{'BLEU': [0.8136727001615207, 0.6606095421082421, 0.5167535314080227, 0.39790755018790197], 'METEOR': 0.29522868252436046, 'ROUGE': 0.5914367650104326, 'CIDEr': 1.3382047139781112, 'SPICE': 0.22953477359195887}

References

[1] M2

[2] grid-feats-vqa

[3] butd

Acknowledgements

Thanks the original m2 and amazing work of grid-feats-vqa.

Owner
lyricpoem
lyricpoem
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
LinkNet - This repository contains our Torch7 implementation of the network developed by us at e-Lab.

LinkNet This repository contains our Torch7 implementation of the network developed by us at e-Lab. You can go to our blogpost or read the article Lin

e-Lab 158 Nov 11, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022