This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Overview

Jump Reward Inference for 1D Music Rhythmic State Spaces

An implementation of the probablistic jump reward inference model for music rhythmic information retrieval using the proposed 1D state space.

PyPI CC BY 4.0

This repository contains the source code and demo videos of a joint music rhythmic analyzer system using the 1D state space and jump reward technique proposed in ICASSP-2022. This implementation includes music beat, downbeat, tempo, and meter tracking jointly and in a causal fashion.

arXiv 2111.00704

The model first takes the waveform to the spectral domain and then feeds them into one of the pre-trained BeatNet models to obtain beat/downbeat activations. Finally, the activations are used in a jump-reward inference model to infer beats, downbeats, tempo, and meter.

System Input:

Raw audio waveform

System Output:

A vector including beats, downbeats, local tempo, and local meter columns, respectively and with the following shape: numpy_array(num_beats, 4).

Installation Command:

Approach #1: Installing binaries from the pypi website:

pip install jump-reward-inference

Approach #2: Installing directly from the Git repository:

pip install git+https://github.com/mjhydri/1D-StateSpace

Usage Example:

estimator = joint_inference(1, plot=True) 

output = estimator.process("music file directory")

Video Demos:

This section demonstrates the system performance for several music genres. Each demo comprises four plots that are described as follows:

  • The first plot: 1D state space for music beat and tempo tracking. Each bar represents the posterior probability of the corresponding state at each time frame.
  • The second plot: The jump-back reward vector for the corresponding beat states.
  • The third plot:1D state space for music downbeat and meter tracking.
  • The fourth plot: The jump-back reward vector for the corresponding downbeat states.

1: Music Genre: Pop

Easy song

2: Music Genre: Country

Easy song

3: Music Genre: Reggae

Easy song

4: Music Genre: Blues

Easy song

5: Music Genre: Classical

Easy song

Demos Discussion:

1- As demo videos suggest, the system infers multiple music rhythmic parameters, including music beat, downbeat, tempo and meter jointly and in an online fashion using very compact 1D state spaces and jump back reward technique. The system works suitably for different music genres. However, the process is relatively more straightforward for some genres such as pop and country due to the rich percussive content, solid attacks, and simpler rhythmic structures. In contrast, it is more challenging for genres with poor percussive profile, longer attack times, and more complex rhythmic structures such as classical music.

2- Since both neural networks and inference models are designed for online/real-time applications, the causalilty constrains are applied and future data is not accessible. It makes the jumpback weigths weaker initially and become stronger over time.

3- Given longer listening time is required to infer higher hierarchies, i.e., downbeat and meter, within the very early few seconds, downbeat results are less confident than lower hierarchies, i.e., beat and tempo, however, they get accurate after observing a bar period.

Acknowledgement

This work has been partially supported by the National Science Foundation grant 1846184.

References:

M. Heydari, M. McCallum, A. Ehmann and Z. Duan, "A Novel 1D State Space for Efficient Music Rhythmic Analysis", In Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2022. #(Submitted)

M. Heydari, F. Cwitkowitz, and Z. Duan, “BeatNet:CRNN and particle filtering for online joint beat down-beat and meter tracking,” in Proc. of the 22th Intl. Conf.on Music Information Retrieval (ISMIR), 2021.

M. Heydari and Z. Duan, “Don’t Look Back: An online beat tracking method using RNN and enhanced particle filtering,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2021.

You might also like...
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Comments
  • Tempo off by 5 consistently

    Tempo off by 5 consistently

    Hi Mojtaba,

    I was trying out your package but find that the reported tempo is off consistently by 5. The easiest test of this is to use 808kick120bpm.mp3 from the beatnet package, though I found the same thing with another music sample. Beatnet reports the. correct tempo.

    Any idea what might cause this?

    Best, Alex

    opened by akhudek 0
Releases(v0.0.6)
Owner
Mojtaba Heydari
Ph.D. student at Audio Information Retrieval (AIR) Lab-University of Rochester, Research Intern at SiriusXM/Pandora
Mojtaba Heydari
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022