I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

Related tags

Deep LearningISECRET
Overview

I-SECRET

This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining".

Data preparation

  1. Firstly, download EyeQ dataset from EyeQ.
  2. Split the dataset into train/val/test according to the EyePACS challenge.
  3. Run
python tools/degrade_eyeq.py --degrade_dir ${DATA_PATH}$ --output_dir $OUTPUT_PATH$ --mask_dir ${MASK_PATH}$ --gt_dir ${GT_PATH}$.

Note that this scipt should be applied for usable dataset for cropping pre-processing.

  1. Make the architecture of the EyeQ directory as:
.
├── 
├── train
│   └── crop_good
│   └── degrade_good
│   └── crop_usable
├── val
│   └── crop_good
│   └── degrade_good
│   └── crop_usable
├── test
│   └── crop_good
│   └── degrade_good
│   └── crop_usable

Here, the crop_good is the ${GT_PATH}$ in the step 3, and degrade_good is the ${OUTPUT_PATH}$ in the step 3.

Package install

Run

pip install -r requirements.txt

Run pipeline

Run the baseline model

python main.py --model i-secret --lambda_rec 1 --lambda_gan 1 --data_root_dir ${DATA_DIR}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$  --name baseline --experiment_root_dir ${LOG_DIR}$

Run the model with IS-loss

python main.py --model i-secret --lambda_is 1 --lambda_gan 1 --data_root_dir ${DATA_DIR}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$  --name is_loss --experiment_root_dir ${LOG_DIR}$

Run the I-SECRET model

python main.py --model i-secret --lambda_is 1 --lambda_icc 1 --lambda_gan 1 --data_root_dir ${DATA_DIR}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$  --name i-secret --experiment_root_dir ${LOG_DIR}$

Visualization

Go to the ${LOG_DIR}$ / ${EXPERIMENT_NAME}$ / checkpoint, run

tensorboard --logdir ./ --port ${PORT}$

then go to localhost:${PORT}$ for detailed logging and visualization.

Test and evalutation

Run

python main.py --test --resume 0 --test_dir ${INPUT_PATH}$ --output_dir ${OUTPUT_PATH}$ --name ${EXPERIMENT_NAME}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$ 

Please note that the metric outputted by test script is under the PyTorch pre-process (resize etc.). It is not precise. Therefore, we need to run the evaluation scipt for further evaluation.

python tools/evaluate.py --test_dir ${OUTPUT_PATH}$ --gt_dir ${GT_PATH}$

Vessel segmentation

We apply the iter-Net framework. We simply replace the test set with the degraded images/enhanced images. For more details, please follow IterNet.

Future Plan

  • Cleaning codes
  • More SOTA backbones (ResNest ...)
  • WGAN loss
  • Internal evaluations for down-sampling tasks

Acknowledgment

Thanks for CutGAN for the implementation of patch NCE loss, EyeQ_Enhancement for degradation codes, Slowfast for the distributed training codes

A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022