This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

Overview

TSForecasting

This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

The benchmark datasets are available at: https://zenodo.org/communities/forecasting. For more details, please refer to our website: https://forecastingdata.org/ and paper: https://arxiv.org/abs/2105.06643.

All datasets contain univariate time series and they are availble in a new format that we name as .tsf, pioneered by the sktime .ts format. The data can be loaded into the R environment in tsibble format [1] by following the example in "utils/data_loader.R". It uses a similar approach to the arff file loading method in R foreign package [2]. The data can be loaded into the Python environment as a Pandas dataframe by following the example in "utils/data_loader.py". Download the .tsf files as required from our Zenodo dataset repository and put them into "tsf_data" folder.

The fixed horizon, rolling origin and feature calculation related experiments are there in the "experiments" folder. Please see the examples in the corresponding R scripts in the "experiments" folder for more details. Makesure to create a folder named "results" in the parent level and sub-folders as necessary before running the experiments. The outputs of the experiments will be stored into the sub-folders within the "results" folder as mentioned follows:

Sub-folder Name Stored Output
rolling_origin_forecasts rolling origin forecasts
rolling_origin_errors rolling origin errors
rolling_origin_execution_times rolling origin execution times
fixed_horizon_forecasts fixed horizon forecasts
fixed_horizon_errors fixed horizon errors
fixed_horizon_execution_times fixed horizon execution times
tsfeatures tsfeatures
catch22_features catch22 features
lambdas boxcox lambdas

Citing Our Work

When using this repository, please cite:

@misc{godahewa2021monash,
    author="Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo",
    title="Monash Time Series Forecasting Archive",
    howpublished ="\url{https://arxiv.org/abs/2105.06643}",
    year="2021"
}

References

[1] Wang, E., Cook, D., Hyndman, R. J. (2020). A new tidy data structure to support exploration and modeling of temporal data. Journal of Computational and Graphical Statistics. doi:10.1080/10618600.2019.1695624.

[2] R Core Team (2018). foreign: Read Data Stored by 'Minitab', 'S', 'SAS', 'SPSS', 'Stata', 'Systat', 'Weka', 'dBase', .... R package version 0.8-71. https://CRAN.R-project.org/package=foreign

Owner
Rakshitha Godahewa
PhD Student
Rakshitha Godahewa
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022