Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Overview

Text2Music Emotion Embedding

Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Reference

Emotion Embedding Spaces for Matching Music to Stories, ISMIR 2021 [paper]

-- Minz Won, Justin Salamon, Nicholas J. Bryan, Gautham J. Mysore, and Xavier Serra

@inproceedings{won2021emotion,
  title={Emotion embedding spaces for matching music to stories},
  author={Won, Minz. and Salamon, Justin. and Bryan, Nicholas J. and Mysore, Gautham J. and Serra, Xavier.},
  booktitle={ISMIR},
  year={2021}
}

Requirements

conda create -n YOUR_ENV_NAME python=3.7
conda activate YOUR_ENV_NAME
pip install -r requirements.txt

Data

  • You need to collect audio files of AudioSet mood subset (link).

  • Read the audio files and store them into .npy format.

  • Other relevant data including Alm's dataset (original link), ISEAR dataset (original link), emotion embeddings, pretrained Word2Vec, and data splits are all available here (link).

  • Unzip ttm_data.tar.gz and locate the extracted data folder under text2music-emotion-embedding/.

Training

Here is an example for training a metric learning model.

python3 src/metric_learning/main.py \
        --dataset 'isear' \
        --num_branches 3 \
        --data_path YOUR_DATA_PATH_TO_AUDIOSET

Fore more examples, check bash files under scripts folder.

Test

Here is an example for the test.

python3 src/metric_learning/main.py \
        --mode 'TEST' \
        --dataset 'alm' \
        --model_load_path 'data/pretrained/alm_cross.ckpt' \
        --data_path 'YOUR_DATA_PATH_TO_AUDIOSET'

Pretrained three-branch metric learning models (alm_cross.ckpt and isear_cross.ckpt) are included in ttm_data.tar.gz. This code is reproducible by locating the unzipped data folder under text2music-emotion-embedding/.

Visualization

Embedding distribution of each model can be projected onto 2-dimensional space. We used uniform manifold approximation and projection (UMAP) to visualize the distribution. UMAP is known to preserve more of global structure compared to t-SNE.

Demo

Please try some examples done by the three-branch metric learning model [Soundcloud].

License

Some License
Owner
Minz Won
Exploring music semantics with machines
Minz Won
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022