Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Overview

Text2Music Emotion Embedding

Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Reference

Emotion Embedding Spaces for Matching Music to Stories, ISMIR 2021 [paper]

-- Minz Won, Justin Salamon, Nicholas J. Bryan, Gautham J. Mysore, and Xavier Serra

@inproceedings{won2021emotion,
  title={Emotion embedding spaces for matching music to stories},
  author={Won, Minz. and Salamon, Justin. and Bryan, Nicholas J. and Mysore, Gautham J. and Serra, Xavier.},
  booktitle={ISMIR},
  year={2021}
}

Requirements

conda create -n YOUR_ENV_NAME python=3.7
conda activate YOUR_ENV_NAME
pip install -r requirements.txt

Data

  • You need to collect audio files of AudioSet mood subset (link).

  • Read the audio files and store them into .npy format.

  • Other relevant data including Alm's dataset (original link), ISEAR dataset (original link), emotion embeddings, pretrained Word2Vec, and data splits are all available here (link).

  • Unzip ttm_data.tar.gz and locate the extracted data folder under text2music-emotion-embedding/.

Training

Here is an example for training a metric learning model.

python3 src/metric_learning/main.py \
        --dataset 'isear' \
        --num_branches 3 \
        --data_path YOUR_DATA_PATH_TO_AUDIOSET

Fore more examples, check bash files under scripts folder.

Test

Here is an example for the test.

python3 src/metric_learning/main.py \
        --mode 'TEST' \
        --dataset 'alm' \
        --model_load_path 'data/pretrained/alm_cross.ckpt' \
        --data_path 'YOUR_DATA_PATH_TO_AUDIOSET'

Pretrained three-branch metric learning models (alm_cross.ckpt and isear_cross.ckpt) are included in ttm_data.tar.gz. This code is reproducible by locating the unzipped data folder under text2music-emotion-embedding/.

Visualization

Embedding distribution of each model can be projected onto 2-dimensional space. We used uniform manifold approximation and projection (UMAP) to visualize the distribution. UMAP is known to preserve more of global structure compared to t-SNE.

Demo

Please try some examples done by the three-branch metric learning model [Soundcloud].

License

Some License
Owner
Minz Won
Exploring music semantics with machines
Minz Won
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022