《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Overview

Update

  • 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code.
  • 2019.11.12: Release tensorflow-version DBG inference code.
  • 2019.11.11: DBG is accepted by AAAI2020.
  • 2019.11.08: Our ensemble DBG ranks No.1 on ActivityNet

Introduction

In this repo, we propose a novel and unified action detection framework, named DBG, with superior performance over the state-of-the-art action detectors BSN and BMN. You can use the code to evaluate our DBG for action proposal generation or action detection. For more details, please refer to our paper Fast Learning of Temporal Action Proposal via Dense Boundary Generator!

Contents

Paper Introduction

image

This paper introduces a novel and unified temporal action proposal generator named Dense Boundary Generator (DBG). In this work, we propose dual stream BaseNet to generate two different level and more discriminative features. We then adopt a temporal boundary classification module to predict precise temporal boundaries, and an action-aware completeness regression module to provide reliable action completeness confidence.

ActivityNet1.3 Results

image

THUMOS14 Results

image

Qualitative Results

Prerequisites

  • Tensorflow == 1.9.0 or PyTorch == 1.1
  • Python == 3.6
  • NVIDIA GPU == Tesla P40
  • Linux CUDA 9.0 CuDNN
  • gcc 5

Getting Started

Installation

Clone the github repository. We will call the cloned directory as $DBG_ROOT.

cd $DBG_ROOT

Firstly, you should compile our proposal feature generation layers.

Please compile according to the framework you need.

Compile tensorflow-version proposal feature generation layers:

cd tensorflow/custom_op
make

Compile pytorch-version proposal feature generation layers:

cd pytorch/custom_op
python setup.py install

Download Datasets

Prepare ActivityNet 1.3 dataset. You can use official ActivityNet downloader to download videos from the YouTube. Some videos have been deleted from YouTube,and you can also ask for the whole dataset by email.

Extract visual feature, we adopt TSN model pretrained on the training set of ActivityNet, Please refer this repo TSN-yjxiong to extract frames and optical flow and refer this repo anet2016-cuhk to find pretrained TSN model.

For convenience of training and testing, we rescale the feature length of all videos to same length 100, and we provide the 19993 rescaled feature at here Google Cloud or 微云. Then put the features to data/tsn_anet200 directory.

For generating the video features, scripts in ./tools will help you to start from scrach.

Testing of DBG

If you don't want to train the model, you can run the testing code directly using the pretrained model.

Pretrained model is included in output/pretrained_model and set parameters on config/config_pretrained.yaml. Please check the feat_dir in config/config_pretrained.yaml and use scripts to run DBG.

# TensorFlow version (AUC result = 68.37%):
python tensorflow/test.py config/config_pretrained.yaml
python post_processing.py output/result/ results/result_proposals.json
python eval.py results/result_proposals.json

# PyTorch version (AUC result = 68.26%):
python pytorch/test.py config/config_pretrained.yaml
python post_processing.py output/result/ results/result_proposals.json
python eval.py results/result_proposals.json

Training of DBG

We also provide training code of tensorflow and pytorch version. Please check the feat_dir in config/config.yaml and follow these steps to train your model:

1. Training

# TensorFlow version:
python tensorflow/train.py config/config.yaml

# PyTorch version:
python pytorch/train.py config/config.yaml

2. Testing

# TensorFlow version:
python tensorflow/test.py config/config.yaml

# PyTorch version:
python pytorch/test.py config/config.yaml

3. Postprocessing

python post_processing.py output/result/ results/result_proposals.json

4. Evaluation

python eval.py results/result_proposals.json

Citation

If you find DBG useful in your research, please consider citing:

@inproceedings{DBG2020arXiv,
  author    = {Chuming Lin*, Jian Li*, Yabiao Wang, Ying Tai, Donghao Luo, Zhipeng Cui, Chengjie Wang, Jilin Li, Feiyue Huang, Rongrong Ji},
  title     = {Fast Learning of Temporal Action Proposal via Dense Boundary Generator},
  booktitle   = {AAAI Conference on Artificial Intelligence},
  year      = {2020},
}

Contact

For any question, please file an issue or contact

Jian Li: [email protected]
Chuming Lin: [email protected]
Owner
Tencent
Tencent
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022