《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Overview

Update

  • 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code.
  • 2019.11.12: Release tensorflow-version DBG inference code.
  • 2019.11.11: DBG is accepted by AAAI2020.
  • 2019.11.08: Our ensemble DBG ranks No.1 on ActivityNet

Introduction

In this repo, we propose a novel and unified action detection framework, named DBG, with superior performance over the state-of-the-art action detectors BSN and BMN. You can use the code to evaluate our DBG for action proposal generation or action detection. For more details, please refer to our paper Fast Learning of Temporal Action Proposal via Dense Boundary Generator!

Contents

Paper Introduction

image

This paper introduces a novel and unified temporal action proposal generator named Dense Boundary Generator (DBG). In this work, we propose dual stream BaseNet to generate two different level and more discriminative features. We then adopt a temporal boundary classification module to predict precise temporal boundaries, and an action-aware completeness regression module to provide reliable action completeness confidence.

ActivityNet1.3 Results

image

THUMOS14 Results

image

Qualitative Results

Prerequisites

  • Tensorflow == 1.9.0 or PyTorch == 1.1
  • Python == 3.6
  • NVIDIA GPU == Tesla P40
  • Linux CUDA 9.0 CuDNN
  • gcc 5

Getting Started

Installation

Clone the github repository. We will call the cloned directory as $DBG_ROOT.

cd $DBG_ROOT

Firstly, you should compile our proposal feature generation layers.

Please compile according to the framework you need.

Compile tensorflow-version proposal feature generation layers:

cd tensorflow/custom_op
make

Compile pytorch-version proposal feature generation layers:

cd pytorch/custom_op
python setup.py install

Download Datasets

Prepare ActivityNet 1.3 dataset. You can use official ActivityNet downloader to download videos from the YouTube. Some videos have been deleted from YouTube,and you can also ask for the whole dataset by email.

Extract visual feature, we adopt TSN model pretrained on the training set of ActivityNet, Please refer this repo TSN-yjxiong to extract frames and optical flow and refer this repo anet2016-cuhk to find pretrained TSN model.

For convenience of training and testing, we rescale the feature length of all videos to same length 100, and we provide the 19993 rescaled feature at here Google Cloud or 微云. Then put the features to data/tsn_anet200 directory.

For generating the video features, scripts in ./tools will help you to start from scrach.

Testing of DBG

If you don't want to train the model, you can run the testing code directly using the pretrained model.

Pretrained model is included in output/pretrained_model and set parameters on config/config_pretrained.yaml. Please check the feat_dir in config/config_pretrained.yaml and use scripts to run DBG.

# TensorFlow version (AUC result = 68.37%):
python tensorflow/test.py config/config_pretrained.yaml
python post_processing.py output/result/ results/result_proposals.json
python eval.py results/result_proposals.json

# PyTorch version (AUC result = 68.26%):
python pytorch/test.py config/config_pretrained.yaml
python post_processing.py output/result/ results/result_proposals.json
python eval.py results/result_proposals.json

Training of DBG

We also provide training code of tensorflow and pytorch version. Please check the feat_dir in config/config.yaml and follow these steps to train your model:

1. Training

# TensorFlow version:
python tensorflow/train.py config/config.yaml

# PyTorch version:
python pytorch/train.py config/config.yaml

2. Testing

# TensorFlow version:
python tensorflow/test.py config/config.yaml

# PyTorch version:
python pytorch/test.py config/config.yaml

3. Postprocessing

python post_processing.py output/result/ results/result_proposals.json

4. Evaluation

python eval.py results/result_proposals.json

Citation

If you find DBG useful in your research, please consider citing:

@inproceedings{DBG2020arXiv,
  author    = {Chuming Lin*, Jian Li*, Yabiao Wang, Ying Tai, Donghao Luo, Zhipeng Cui, Chengjie Wang, Jilin Li, Feiyue Huang, Rongrong Ji},
  title     = {Fast Learning of Temporal Action Proposal via Dense Boundary Generator},
  booktitle   = {AAAI Conference on Artificial Intelligence},
  year      = {2020},
}

Contact

For any question, please file an issue or contact

Jian Li: [email protected]
Chuming Lin: [email protected]
Owner
Tencent
Tencent
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022