Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Overview

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning

Tensorflow code and models for the paper:

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning
Yin Cui, Yang Song, Chen Sun, Andrew Howard, Serge Belongie
CVPR 2018

This repository contains code and pre-trained models used in the paper and 2 demos to demonstrate: 1) the importance of pre-training data on transfer learning; 2) how to calculate domain similarity between source domain and target domain.

Notice that we used a mini validation set (./inat_minival.txt) contains 9,697 images that are randomly selected from the original iNaturalist 2017 validation set. The rest of valdiation images were combined with the original training set to train our model in the paper. There are 665,473 training images in total.

Dependencies:

Preparation:

  • Clone the repo with recursive:
git clone --recursive https://github.com/richardaecn/cvpr18-inaturalist-transfer.git
  • Install dependencies. Please refer to TensorFlow, pyemd, scikit-learn and scikit-image official websites for installation guide.
  • Download data and feature and unzip them into the same directory as the cloned repo. You should have two folders './data' and './feature' in the repo's directory.

Datasets (optional):

In the paper, we used data from 9 publicly available datasets:

We provide a download link that includes the entire CUB-200-2011 dataset and data splits for the rest of 8 datasets. The provided link contains sufficient data for this repo. If you would like to use other 8 datasets, please download them from the official websites and put them in the corresponding subfolders under './data'.

Pre-trained Models (optional):

The models were trained using TensorFlow-Slim. We implemented Squeeze-and-Excitation Networks (SENet) under './slim'. The pre-trained models can be downloaded from the following links:

Network Pre-trained Data Input Size Download Link
Inception-V3 ImageNet 299 link
Inception-V3 iNat2017 299 link
Inception-V3 iNat2017 448 link
Inception-V3 iNat2017 299 -> 560 FT1 link
Inception-V3 ImageNet + iNat2017 299 link
Inception-V3 SE ImageNet + iNat2017 299 link
Inception-V4 iNat2017 448 link
Inception-V4 iNat2017 448 -> 560 FT2 link
Inception-ResNet-V2 ImageNet + iNat2017 299 link
Inception-ResNet-V2 SE ImageNet + iNat2017 299 link
ResNet-V2 50 ImageNet + iNat2017 299 link
ResNet-V2 101 ImageNet + iNat2017 299 link
ResNet-V2 152 ImageNet + iNat2017 299 link

1 This model was trained with 299 input size on train + 90% val and then fine-tuned with 560 input size on 90% val.

2 This model was trained with 448 input size on train + 90% val and then fine-tuned with 560 input size on 90% val.

TensorFlow Hub also provides a pre-trained Inception-V3 299 on iNat2017 original training set here.

Featrue Extraction (optional):

Run the following Python script to extract feature:

python feature_extraction.py

To run this script, you need to download the checkpoint of Inception-V3 299 trained on iNat2017. The dataset and pre-trained model can be modified in the script.

We provide a download link that includes features used in the domos of this repo.

Demos

  1. Linear logistic regression on extracted features:

This demo shows the importance of pre-training data on transfer learning. Based on features extracted from an Inception-V3 pre-trained on iNat2017, we are able to achieve 89.9% classification accuracy on CUB-200-2011 with the simple logistic regression, outperforming most state-of-the-art methods.

LinearClassifierDemo.ipynb
  1. Calculating domain similarity by Earth Mover's Distance (EMD): This demo gives an example to calculate the domain similarity proposed in the paper. Results correspond to part of the Fig. 5 in the original paper.
DomainSimilarityDemo.ipynb

Training and Evaluation

  • Convert dataset into '.tfrecord':
python convert_dataset.py --dataset_name=cub_200 --num_shards=10
  • Train (fine-tune) the model on 1 GPU:
CUDA_VISIBLE_DEVICES=0 ./train.sh
  • Evaluate the model on another GPU simultaneously:
CUDA_VISIBLE_DEVICES=1 ./eval.sh
  • Run Tensorboard for visualization:
tensorboard --logdir=./checkpoints/cub_200/ --port=6006

Citation

If you find our work helpful in your research, please cite it as:

@inproceedings{Cui2018iNatTransfer,
  title = {Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning},
  author = {Yin Cui, Yang Song, Chen Sun, Andrew Howard, Serge Belongie},
  booktitle={CVPR},
  year={2018}
}
Owner
Yin Cui
Research Scientist at Google
Yin Cui
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022