NaturalProofs: Mathematical Theorem Proving in Natural Language

Overview

NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language
Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, Kyunghyun Cho

This repo contains:

  • The NaturalProofs Dataset and the mathematical reference retrieval task data.
  • Preprocessing NaturalProofs and the retrieval task data.
  • Training and evaluation for mathematical reference retrieval.
  • Pretrained models for mathematical reference retrieval.

Please cite our work if you found the resources in this repository useful:

@article{welleck2021naturalproofs,
  title={NaturalProofs: Mathematical Theorem Proving in Natural Language},
  author={Welleck, Sean and Liu, Jiacheng and Le Bras, Ronan and Hajishirzi, Hannaneh and Choi, Yejin and Cho, Kyunghyun},
  year={2021}
}
Section Subsection
NaturalProofs Dataset Dataset
Preprocessing
Mathematical Reference Retrieval Dataset
Setup
Preprocessing
Pretrained models
Training
Evaluation

NaturalProofs Dataset

We provide the preprocessed NaturalProofs Dataset (JSON):

NaturalProofs Dataset
dataset.json [zenodo]

Preprocessing

To see the steps used to create the NaturalProofs dataset.json from raw ProofWiki data:

  1. Download the ProofWiki XML.
  2. Preprocess the data using notebooks/parse_proofwiki.ipynb.
  3. Form the data splits using notebooks/dataset_splits.ipynb.

Mathematical Reference Retrieval

Dataset

The Mathematical Reference Retrieval dataset contains (x, r, y) examples with theorem statements x, positive and negative references r, and 0/1 labels y, derived from NaturalProofs.

We provide the version used in the paper (bert-based-cased tokenizer, 200 randomly sampled negatives):

Reference Retrieval Dataset
bert-base-cased 200 negatives

Pretrained Models

Pretrained models
bert-base-cased
lstm

These models were trained with the "bert-base-cased 200 negatives" dataset provided above.

Setup

python setup.py develop

You can see the DockerFile for additional version info, etc.

Generating and tokenizing

To create your own version of the retrieval dataset, use python utils.py.

This step is not needed if you are using the reference retrieval dataset provided above.

Example:

python utils.py --filepath /path/to/dataset.json --output-path /path/to/out/ --model-type bert-base-cased
# => Writing dataset to /path/to/out/dataset_tokenized__bert-base-cased_200.pkl

Evaluation

Using the retrieval dataset and a model provided above, we compute the test evaluation metrics in the paper:

  1. Predict the rankings:
python naturalproofs/predict.py \
--method bert-base-cased \      # | lstm
--model-type bert-base-cased \  # | lstm
--datapath /path/to/dataset_tokenized__bert-base-cased_200.pkl \
--datapath-base /path/to/dataset.json \
--checkpoint-path /path/to/best.ckpt \
--output-dir /path/to/out/ \
--split test  # use valid during model development
  1. Compute metrics over the rankings:
python naturalproofs/analyze.py \
--method bert-base-cased \      # | lstm
--eval-path /path/to/out/eval.pkl \
--analysis-path /path/to/out/analysis.pkl

Training

python naturalproofs/model.py \
--datapath /path/to/dataset_tokenized__bert-base-cased_200.pkl \
--default-root-dir /path/to/out/

Classical Retrieval Baselines

TF-IDF example:

python naturalproofs/baselines.py \
--method tfidf \
--datapath /path/to/dataset_tokenized__bert-base-cased_200.pkl \
--datapath-base /path/to/dataset.json \
--savedir /path/to/out/

Then use analyze.py as shown above to compute metrics.

Owner
Sean Welleck
Sean Welleck
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022