[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

Overview

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021)

Introduction

This is an official pytorch implementation of An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation. [ICCV 2021] PDF

Abstract

Most semi-supervised learning models are consistency-based, which leverage unlabeled images by maximizing the similarity between different augmentations of an image. But when we apply them to human pose estimation that has extremely imbalanced class distribution, they often collapse and predict every pixel in unlabeled images as background. We find this is because the decision boundary passes the high-density areas of the minor class so more and more pixels are gradually mis-classified as background.

In this work, we present a surprisingly simple approach to drive the model. For each image, it composes a pair of easy-hard augmentations and uses the more accurate predictions on the easy image to teach the network to learn pose information of the hard one. The accuracy superiority of teaching signals allows the network to be “monotonically” improved which effectively avoids collapsing. We apply our method to the state-of-the-art pose estimators and it further improves their performance on three public datasets.

Main Results

1. Semi-Supervised Setting

Results on COCO Val2017

Method Augmentation 1K Labels 5K Labels 10K Labels
Supervised Affine 31.5 46.4 51.1
PoseCons (Single) Affine 38.5 50.5 55.4
PoseCons (Single) Affine + Joint Cutout 42.1 52.3 57.3
PoseDual (Dual) Affine 41.5 54.8 58.7
PoseDual (Dual) Affine + RandAug 43.7 55.4 59.3
PoseDual (Dual) Affine + Joint Cutout 44.6 55.6 59.6

We use COCO Subset (1K, 5K and 10K) and TRAIN as labeled and unlabeled datasets, respectively

Note:

  • The Ground Truth person boxes is used
  • No flipping test is used.

2. Full labels Setting

Results on COCO Val2017

Method Network AP AP.5 AR
Supervised ResNet50 70.9 91.4 74.2
PoseDual ResNet50 73.9 (↑3.0) 92.5 77.0
Supervised HRNetW48 77.2 93.5 79.9
PoseDual HRNetW48 79.2 (↑2.0) 94.6 81.7

We use COCO TRAIN and WILD as labeled and unlabeled datasets, respectively

Pretrained Models

Download Links Google Drive

Environment

The code is developed using python 3.7 on Ubuntu 16.04. NVIDIA GPUs are needed.

Quick start

Installation

  1. Install pytorch >= v1.2.0 following official instruction.

  2. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Make libs:

    cd ${POSE_ROOT}/lib
    make
    
  5. Init output(training model output directory)::

     mkdir output 
     mkdir log
    
  6. Download pytorch imagenet pretrained models from Google Drive. The PoseDual (ResNet18) should load resnet18_5c_gluon_posedual as pretrained for training,

  7. Download our pretrained models from Google Drive

    ${POSE_ROOT}
     `-- models
         `-- pytorch
             |-- imagenet
             |   |-- resnet18_5c_f3_posedual.pth
             |   |-- resnet18-5c106cde.pth
             |   |-- resnet50-19c8e357.pth
             |   |-- resnet101-5d3b4d8f.pth
             |   |-- resnet152-b121ed2d.pth
             |   |-- ......
             |-- pose_dual
                 |-- COCO_subset
                 |   |-- COCO1K_PoseDual.pth.tar
                 |   |-- COCO5K_PoseDual.pth.tar
                 |   |-- COCO10K_PoseDual.pth.tar
                 |   |-- ......
                 |-- COCO_COCOwild
                 |-- ......
    

Data preparation

For COCO and MPII dataset, Please refer to Simple Baseline to prepare them.
Download Person Detection Boxes and Images for COCO WILD (unlabeled) set. The structure looks like this:

${POSE_ROOT}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   |-- person_keypoints_val2017.json
        |   `__ image_info_unlabeled2017.json
        |-- person_detection_results
        |   |-- COCO_val2017_detections_AP_H_56_person.json
        |   |-- COCO_test-dev2017_detections_AP_H_609_person.json
        |   `-- COCO_unlabeled2017_detections_person_faster_rcnn.json
        `-- images
            |-- train2017
            |   |-- 000000000009.jpg
            |   |-- 000000000025.jpg
            |   |-- ... 
            `-- val2017
                |-- 000000000139.jpg
                |-- 000000000285.jpg
                |-- ... 

For AIC data, please download from AI Challenger 2017, 2017 Train/Val is needed for keypoints training and validation. Please download the annotation files from AIC Annotations. The structure looks like this:

${POSE_ROOT}
|-- data
`-- |-- ai_challenger
    `-- |-- train
        |   |-- images
        |   `-- keypoint_train_annotation.json
        `-- validation
            |-- images
            |   |-- 0a00c0b5493774b3de2cf439c84702dd839af9a2.jpg
            |   |-- 0a0c466577b9d87e0a0ed84fc8f95ccc1197f4b0.jpg
            |   `-- ...
            |-- gt_valid.mat
            `-- keypoint_validation_annotation.json

Run

Training

1. Training Dual Networks (PoseDual) on COCO 1K labels

python pose_estimation/train.py \
    --cfg experiments/mix_coco_coco/res18/256x192_COCO1K_PoseDual.yaml

2. Training Dual Networks on COCO 1K labels with Joint Cutout

python pose_estimation/train.py \
    --cfg experiments/mix_coco_coco/res18/256x192_COCO1K_PoseDual_JointCutout.yaml

3.Training Dual Networks on COCO 1K labels with Distributed Data Parallel

python -m torch.distributed.launch --nproc_per_node=4  pose_estimation/train.py \
    --distributed --cfg experiments/mix_coco_coco/res18/256x192_COCO1K_PoseDual.yaml

4. Training Single Networks (PoseCons) on COCO 1K labels

python pose_estimation/train.py \
    --cfg experiments/mix_coco_coco/res18/256x192_COCO1K_PoseCons.yaml

5. Training Dual Networks (PoseDual) with ResNet50 on COCO TRAIN + WILD

python pose_estimation/train.py \
    --cfg experiments/mix_coco_coco/res50/256x192_COCO_COCOunlabel_PoseDual_JointCut.yaml

Testing

6. Testing Dual Networks (PoseDual+COCO1K) on COCO VAL

python pose_estimation/valid.py \
    --cfg experiments/mix_coco_coco/res18/256x192_COCO1K_PoseDual.yaml

Citation

If you use our code or models in your research, please cite with:

@inproceedings{semipose,
  title={An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation},
  author={Xie, Rongchang and Wang, Chunyu and Zeng, Wenjun and Wang, Yizhou},
  booktitle={ICCV},
  year={2021}
}

Acknowledgement

The code is mainly based on Simple Baseline and HRNet. Some code comes from DarkPose. Thanks for their works.

Owner
rongchangxie
Graduate student of Peking university
rongchangxie
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.

SARS-CoV-2 processing requests Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide. Prerequisites This autom

useGalaxy.eu 17 Aug 13, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023