MogFace: Towards a Deeper Appreciation on Face Detection

Related tags

Deep LearningMogFace
Overview

MogFace: Towards a Deeper Appreciation on Face Detection

Introduction

  • In this repo, we propose a promising face detector, termed as MogFace.

  • Our MogFace consists of 3 novel modules, including Ali-AMS, SSE and HCAM.

  • Our MogFace achieves six champions on WIDER FACE.

Prepare Environment

conda create -n MogFace python=3.6
conda activate MogFace
pip install -r requirements.txt
cd utils/nms && python setup.py build_ext --inplace && cd ../..
cd utils/bbox && python setup.py build_ext --inplace && cd ../..

Data Preparation

  1. Download preatrain_weights into pretrain_weights
  2. Download the WIDERFACE dataset.
  3. Organize the dataset directory under Mogface/ as follows; We also provide the organized dataset.
  dataset/WIDERFACE/
    WIDER_train/
      images/
    WIDER_val/
      images/
    WIDER_test/
      images/
    wider_face_split/
      wider_face_train_bbx_gt.txt
      wider_face_val.mat
      wider_face_test.mat
    ground_truth/

Training

  1. Train Ali-AMS
  CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py -c configs/mogface/MogFace_Ali-AMS.yml
  1. Train SSE
  CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py -c configs/mogface/MogFace_SSE.yml
  1. Train HCAM
  CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py -c configs/mogface/MogFace_HCAM.yml

Testing

  1. Single scale test on $CONFIG_FILE$
  CUDA_VISIBLE_DEVICES=0 python test_single.py -c $CONFIG_FILE$
  CUDA_VISIBLE_DEVICES=0 python test_single.py -c configs/mogface/MogFace_Ali-AMS.yml
  1. Multi scale test on $CONFIG_FILE$
  CUDA_VISIBLE_DEVICES=0 python test_multi.py -c $CONFIG_FILE$

MogFace Pretrained Models

Name Easy Medium Hard Link
MogFace_Ali-AMS (SS_test) 94.6 93.6 87.3 download
MogFace_SSE (SS_test) 95.6 94.1 - download
MogFace_HCAM (SS_test) 95.1 94.2 87.4 download
MogFace-E (MS_test) 97.7 96.9 92.0 download
MogFace (MS_test) 97.0 96.3 93.0 download
  • MS_Test: multi-scale testing
  • SS_Test: single-scale testing
  CUDA_VISIBLE_DEVICES=0 python test_multi.py -c configs/mogface/MogFace.yml -n 140 --test_hard 1
  CUDA_VISIBLE_DEVICES=1 python test_multi.py -c configs/mogface/MogFace_E.yml -n 140

The best MogFace model and some tricks will be released soon.

USAGE

  1. Download MogFace-E Pretrained Model from link
  2. mkdir -p snapshots/MogFace-E && mv model_140000.pth snapshots/MogFace-E/
  3. CUDA_VISIBLE_DEVICES=0 python test_multi.py -c configs/mogface/MogFace-E.yml -n 140
Owner
A vision team from Alibaba
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021