Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Overview

Semi-supervised Domain Adaptive Structure Learning - ASDA

This repo contains the source code and dataset for our ASDA paper.

ASDA Illustration of the proposed Adaptive Structure Learning for Semi-supervised Domain Adaptation (ASDA) including three modules: 1) a deep feature encoder network, 2) a source-scattering classifier network, and 3) a target-clustering classifier network.The raw data will be transformed into different formats as inputs according to the WeakAug and StrongAug operations. In this figure, both generators (in yellow) share the parameters for feature extraction. The two classifiers will take the features from the generator for classification.

Introduction

Semi-supervised domain adaptation (SSDA) is quite a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains. Unfortunately, a simple combination of domain adaptation (DA) and semi-supervised learning (SSL) methods often fail to address such two objects because of training data bias towards labeled samples. In this paper, we introduce an adaptive structure learning method to regularize the cooperation of SSL and DA. Inspired by the multi-views learning, our proposed framework is composed of a shared feature encoder network and two classifier networks, trained for contradictory purposes. Among them, one of the classifiers is applied to group target features to improve intra-class density, enlarging the gap of categorical clusters for robust representation learning. Meanwhile, the other classifier, serviced as a regularizer, attempts to scatter the source features to enhance the smoothness of the decision boundary. The iterations of target clustering and source expansion make the target features being well-enclosed inside the dilated boundary of the corresponding source points. For the joint address of cross-domain features alignment and partially labeled data learning, we apply the maximum mean discrepancy (MMD) distance minimization and self-training (ST) to project the contradictory structures into a shared view to make the reliable final decision. The experimental results over the standard SSDA benchmarks, including DomainNet and Office-home, demonstrate both the accuracy and robustness of our method over the state-of-the-art approaches.

Dataset

The data processing follows the protocol of MME.

To get data, run

sh download_data.sh

The images will be stored in the following way.

../data/multi/real/category_name,

../data/multi/sketch/category_name

The dataset split files are stored as follows,

../data/txt/multi/labeled_source_images_real.txt,

../data/txt/multi/unlabeled_target_images_sketch_3.txt,

../data/txt/multi/validation_target_images_sketch_3.txt.

The office and office home datasets are organized in the following ways,

../data/office/amazon/category_name,

../data/office_home/Real/category_name.

The dataset split files of office or office_home are stored as follows,

../data/txt/office/labeled_source_images_amazon.txt,

../data/txt/office_home/unlabeled_target_images_Art_3.txt,

Requirements

pip install -r requirements.txt

Train & Test

If you run the experiment on one adaptation scanerio, like real to sketch of the DomainNet,

python main_asda.py --dataset multi --source real --target sketch --num 3 --lr 0.01

or run experiments on all adaptation scenarios.

bash train_domainnet.sh

To Do

- [x] Datasets Processing
- [x] DomainNet Training
- [ ] OfficeHome Training

The remaining implementations are coming soon.

Acknowledgement

We would like to thank the MME, RandAugment and UODA which we used for this implementation.

Owner
PhD student in Northeastern University, Boston, USA
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022