Myia prototyping

Related tags

Deep Learningmyia
Overview

Myia

Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their gradients. The main application Myia aims to support is research in artificial intelligence, in particular deep learning algorithms.

  • Define a model using a subset of Python, which is compiled to Myia (interfaces in other languages than Python may follow). This subset is general purpose and includes looping constructs and recursion. It excludes side effects and inplace operations.
  • Ask for the derivative of your model. Derivatives are fully supported for all control flow and all differentiable primitives.
  • Compile to efficient CPU and GPU code that optimizes use of your resources.

If you want to play with the current implementation, you can check out ALPHA.md

A short document explaining some of Myia's inner workings is available here

Status

Myia is currently under development and is not yet ready for use. We are optimistic about having an alpha version to play with around the start of 2020.

See Roadmap.

Motivation

Development in artificial intelligence has been undergoing a boom in the past decade, chiefly due to the success of deep neural networks. The training of a neural network is a sort of differentiable program: one writes a program to compute the output and a cost, and then one computes the derivative of that cost with respect to the model's parameters to determine how they should be updated.

Differentiation can be automated, but mainstream programming languages offer no support for this, hence the need for libraries or programming languages that can reliably support these applications.

The current leading solutions for deep learning fall in two camps:

Computation graph-based solutions such as TensorFlow, Theano and MXNet support automatic differentiation and are very well optimized, but they are not fully general, with only limited support for loops and none for general recursion. Thus models like recursive neural networks are tricky and awkward to write.

Operator overloading solutions such as PyTorch or Autograd use a dynamic approach to automatic differentiation which makes them much more general, but they are tightly coupled to the Python language and cannot reap the benefits of an optimizing compiler. They also involve a certain quantity of overhead per operation which discourages composing small cheap operations.

Myia's solution is to define a strongly-typed, general-purpose intermediate representation with an IR-level automatic differentiation transformation, which can then be compiled and optimized for various targets, thereby getting the best of both leading approaches.

Roadmap

Current

  • Parser: Supports def, if, for, while, operators, function calls, class and methods (limited support).
  • Intermediate representation: Implemented, with an array of utilities.
  • Debug VM: Faithfully runs the IR.
  • VM: Works on the simplified/optimized IR.
  • Primitives: Scalar primitives work, as well as map, reduce, broadcasting, 2D convolutions, concat/split, and many other operations.
  • Type system: Types are inferred without the need for annotations. Shapes can also be inferred. Myia supports recursive ADTs (e.g. tree data structures).
  • Optimization: Pattern-based optimizations, inlining, constant propagation, common subexpression elimination, closure conversion.
  • Automatic differentiation: Second order differentiation is not yet in working order.
  • GPU support: Using Relay or PyTorch.

In development

  • Compiler optimization: The compiler currently needs to be optimized to reduce compile times.
  • Auto-monadization: We are working to support print statements and random number generation through an auto-monadization system that can automatically keep track of the IO or RNG state.

Next steps

  • Error messages: We need to make sure that every likely mistake leads to an understandable and traceable error diagnosis.

Near future

  • Serialization: Serializing optimized graphs will allow for greater performance across runs and greater portability across systems.
  • Debugger: Intent is to have a step debugger for Myia. There used to be a working one for a previous version of the IR, so this should not pose a problem.
  • More Python syntax: break/continue.

After Beta

  • Even more Python syntax: Support for these features is not certain.
    • Augmented assignment (under restrictions)
    • yield and await
  • Support other languages: Which ones depend on demand. A new language is also a possibility.

Publications

Citation

If you use Myia for a scientific paper, please cite the above paper or mention Myia in the acknowledgements. It would be great if you could also let us know about it.

Owner
Mila
Quebec Artificial Intelligence Institute
Mila
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

VΓ­tor Albiero 519 Dec 29, 2022
A clean and scalable template to kickstart your deep learning project πŸš€ ⚑ πŸ”₯

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project πŸš€ ⚑ πŸ”₯ Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022