Myia prototyping

Related tags

Deep Learningmyia
Overview

Myia

Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their gradients. The main application Myia aims to support is research in artificial intelligence, in particular deep learning algorithms.

  • Define a model using a subset of Python, which is compiled to Myia (interfaces in other languages than Python may follow). This subset is general purpose and includes looping constructs and recursion. It excludes side effects and inplace operations.
  • Ask for the derivative of your model. Derivatives are fully supported for all control flow and all differentiable primitives.
  • Compile to efficient CPU and GPU code that optimizes use of your resources.

If you want to play with the current implementation, you can check out ALPHA.md

A short document explaining some of Myia's inner workings is available here

Status

Myia is currently under development and is not yet ready for use. We are optimistic about having an alpha version to play with around the start of 2020.

See Roadmap.

Motivation

Development in artificial intelligence has been undergoing a boom in the past decade, chiefly due to the success of deep neural networks. The training of a neural network is a sort of differentiable program: one writes a program to compute the output and a cost, and then one computes the derivative of that cost with respect to the model's parameters to determine how they should be updated.

Differentiation can be automated, but mainstream programming languages offer no support for this, hence the need for libraries or programming languages that can reliably support these applications.

The current leading solutions for deep learning fall in two camps:

Computation graph-based solutions such as TensorFlow, Theano and MXNet support automatic differentiation and are very well optimized, but they are not fully general, with only limited support for loops and none for general recursion. Thus models like recursive neural networks are tricky and awkward to write.

Operator overloading solutions such as PyTorch or Autograd use a dynamic approach to automatic differentiation which makes them much more general, but they are tightly coupled to the Python language and cannot reap the benefits of an optimizing compiler. They also involve a certain quantity of overhead per operation which discourages composing small cheap operations.

Myia's solution is to define a strongly-typed, general-purpose intermediate representation with an IR-level automatic differentiation transformation, which can then be compiled and optimized for various targets, thereby getting the best of both leading approaches.

Roadmap

Current

  • Parser: Supports def, if, for, while, operators, function calls, class and methods (limited support).
  • Intermediate representation: Implemented, with an array of utilities.
  • Debug VM: Faithfully runs the IR.
  • VM: Works on the simplified/optimized IR.
  • Primitives: Scalar primitives work, as well as map, reduce, broadcasting, 2D convolutions, concat/split, and many other operations.
  • Type system: Types are inferred without the need for annotations. Shapes can also be inferred. Myia supports recursive ADTs (e.g. tree data structures).
  • Optimization: Pattern-based optimizations, inlining, constant propagation, common subexpression elimination, closure conversion.
  • Automatic differentiation: Second order differentiation is not yet in working order.
  • GPU support: Using Relay or PyTorch.

In development

  • Compiler optimization: The compiler currently needs to be optimized to reduce compile times.
  • Auto-monadization: We are working to support print statements and random number generation through an auto-monadization system that can automatically keep track of the IO or RNG state.

Next steps

  • Error messages: We need to make sure that every likely mistake leads to an understandable and traceable error diagnosis.

Near future

  • Serialization: Serializing optimized graphs will allow for greater performance across runs and greater portability across systems.
  • Debugger: Intent is to have a step debugger for Myia. There used to be a working one for a previous version of the IR, so this should not pose a problem.
  • More Python syntax: break/continue.

After Beta

  • Even more Python syntax: Support for these features is not certain.
    • Augmented assignment (under restrictions)
    • yield and await
  • Support other languages: Which ones depend on demand. A new language is also a possibility.

Publications

Citation

If you use Myia for a scientific paper, please cite the above paper or mention Myia in the acknowledgements. It would be great if you could also let us know about it.

Owner
Mila
Quebec Artificial Intelligence Institute
Mila
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022