Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Overview

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

This is the official code for DyReg model inroduced in Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Citation

Please use the following BibTeX to cite our work.

@incollection{duta2021dynamic_dyreg_gnn_neurips2021,
title = {Discovering Dynamic Salient Regions with Spatio-Temporal Graph
Neural Networks},
author = {Duta, Iulia and Nicolicioiu, Andrei and Leordeanu, Marius},
booktitle = {Advances in Neural Information Processing Systems 34},
year = {2021}
}

@article{duta2020dynamic_dyreg,
title = {Dynamic Regions Graph Neural Networks for Spatio-Temporal Reasoning},
author = {Duta, Iulia and Nicolicioiu, Andrei and Leordeanu, Marius},
journal = {NeurIPS 2020 Workshop on Object Representations for Learning and Reasoning},
year = {2020},
}

Requirements

The code was developed using:

- python 3.7
- matplotlib
- torch 1.7.1
- script
- pandas
- torchvision
- moviepy
- ffmpeg

Overview:

The repository contains the Pytorch implementation of the DyReg-GNN model. The model is defined and trained in the following files:

  • ops/dyreg.py - code for our DyReg module

  • ops/rstg.py - code for the Spatio-temporal GNN (RSTG) used to process the graph extracted using DyReg

  • create_model.py - two examples how to integrate the DyReg-GNN module inside an existing backbone

  • main_standard.py - code to train a model on Smt-Smt dataset

  • test_models.py - code for multi-clip evaluation

Scripts for preparing the data, training and testing the model:

Prepare dataset

For Something Something dataset:

  • the json files containing meta-data should be stored in ./data/smt-smt-V2/tsm_data
  • the zip files containing the videos should be stored in ./data/smt-smt-V2/

  1. To extract the videos from the zip files run:

cat 20bn-something-something-v2-?? | tar zx

  1. To extract the frames from videos run:

python tools/vid2img_sthv2.py

→ The videos will be stored in $FRAME_ROOT (default './data/smt-smt-V2/tmp_smt-smt-V2-frames')

💡 If you already have the dataset as frames, place them under ./data/smt-smt-V2/smt-smt-V2-frames/, one folder for each video
💡 💡 If you need to change the path for datasets modify $ROOT_DATASET in dataset_config.py

  1. To generate the labels file in the required format please run:

python tools/gen_label_sthv2.py

→ The resulting txt files, for each split, will be stored in $DATA_UTILS_ROOT (default './data/smt-smt-V2/tsm_data/')

How to run the model

DyReg-GNN module can be simply inserted into any space-time model.

import torch
from torch.nn import functional as F
from ops.dyreg import DynamicGraph, dyregParams

class SpaceTimeModel(torch.nn.Module):
    def __init__(self):
        super(SpaceTimeModel, self).__init__()
        dyreg_params = dyregParams()
        dyregParams.offset_lstm_dim = 32
        self.dyreg = DynamicGraph(dyreg_params,
                    backbone_dim=32, node_dim=32, out_num_ch=32,
                    H=16, W=16, 
                    iH=16, iW=16,
                    project_i3d=False,
                    name='lalalal')


        self.fc = torch.nn.Linear(32, 10)

    def forward(self, x):
        dx = self.dyreg(x)
        # you can initialize the dyreg branch as identity function by normalisation, 
        #   as done in DynamicGraphWrapper found in ./ops/dyreg.py 
        x = x + dx
        # average over time and space: T, H, W
        x = x.mean(-1).mean(-1).mean(-2)
        x = self.fc(x)
        return x


B = 8
T = 10
C = 32
H = 16
W = 16
x = torch.ones(B,T,C,H,W)
st_model = SpaceTimeModel()
out = st_model(x)

For another example of how to integrate DyReg (DynamicGraph module) inside your model please look at create_model.py or run:

python create_model.py

Something-Something experiments

Training a model

To train a model on smt-smt v2 dataset please run

./start_main_standard.sh model_name

For default hyperparameters check opts.py. For example, place_graph flag controls how many DyReg-GNN modules to use and where to place them inside the backbone:

# for a model with 3 DyReg-GNN modules placed after layer 2-block 2, layer 3-block 4 and layer 4-block 1 of the backbone
--place_graph=layer2.2_layer3.4_layer4.1 
# for a model with 1 dyreg module placed after layer 3 block 4 of the backbone
--place_graph=layer3.4                   

Single clip evaluation

Train a model with the above script or download a pre-trained DyReg-GNN model from here and put the checkpoint in ./ckeckpoints/

To evaluate a model on smt-smt v2 dataset on a single 224 x 224 central crop, run:

./start_main_standard_test.sh model_name

The flag $RESUME_CKPT indicate the the checkpoint used for evaluation.

Multi clips evaluation

To evaluate a model in the multi-clips setup (3 spatials clips x 2 temporal samplings) on Smt-Smt v2 dataset please run

./evaluate_model.sh model_name

The flag $RESUME_CKPT indicate the the checkpoint used for evaluation.

TSM Baseline

This repository adds DyReg-GNN modules to a TSM backbone based on code from here.

Owner
Bitdefender Machine Learning
Machine Learning Research @ Bitdefender
Bitdefender Machine Learning
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Project for tracking occupancy in Tel-Aviv parking lots.

Ahuzat Dibuk - Tracking occupancy in Tel-Aviv parking lots main.py This module was set-up to be executed on Google Cloud Platform. I run it every 15 m

Geva Kipper 35 Nov 22, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022