Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Overview

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

This is the official code for DyReg model inroduced in Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Citation

Please use the following BibTeX to cite our work.

@incollection{duta2021dynamic_dyreg_gnn_neurips2021,
title = {Discovering Dynamic Salient Regions with Spatio-Temporal Graph
Neural Networks},
author = {Duta, Iulia and Nicolicioiu, Andrei and Leordeanu, Marius},
booktitle = {Advances in Neural Information Processing Systems 34},
year = {2021}
}

@article{duta2020dynamic_dyreg,
title = {Dynamic Regions Graph Neural Networks for Spatio-Temporal Reasoning},
author = {Duta, Iulia and Nicolicioiu, Andrei and Leordeanu, Marius},
journal = {NeurIPS 2020 Workshop on Object Representations for Learning and Reasoning},
year = {2020},
}

Requirements

The code was developed using:

- python 3.7
- matplotlib
- torch 1.7.1
- script
- pandas
- torchvision
- moviepy
- ffmpeg

Overview:

The repository contains the Pytorch implementation of the DyReg-GNN model. The model is defined and trained in the following files:

  • ops/dyreg.py - code for our DyReg module

  • ops/rstg.py - code for the Spatio-temporal GNN (RSTG) used to process the graph extracted using DyReg

  • create_model.py - two examples how to integrate the DyReg-GNN module inside an existing backbone

  • main_standard.py - code to train a model on Smt-Smt dataset

  • test_models.py - code for multi-clip evaluation

Scripts for preparing the data, training and testing the model:

Prepare dataset

For Something Something dataset:

  • the json files containing meta-data should be stored in ./data/smt-smt-V2/tsm_data
  • the zip files containing the videos should be stored in ./data/smt-smt-V2/

  1. To extract the videos from the zip files run:

cat 20bn-something-something-v2-?? | tar zx

  1. To extract the frames from videos run:

python tools/vid2img_sthv2.py

→ The videos will be stored in $FRAME_ROOT (default './data/smt-smt-V2/tmp_smt-smt-V2-frames')

💡 If you already have the dataset as frames, place them under ./data/smt-smt-V2/smt-smt-V2-frames/, one folder for each video
💡 💡 If you need to change the path for datasets modify $ROOT_DATASET in dataset_config.py

  1. To generate the labels file in the required format please run:

python tools/gen_label_sthv2.py

→ The resulting txt files, for each split, will be stored in $DATA_UTILS_ROOT (default './data/smt-smt-V2/tsm_data/')

How to run the model

DyReg-GNN module can be simply inserted into any space-time model.

import torch
from torch.nn import functional as F
from ops.dyreg import DynamicGraph, dyregParams

class SpaceTimeModel(torch.nn.Module):
    def __init__(self):
        super(SpaceTimeModel, self).__init__()
        dyreg_params = dyregParams()
        dyregParams.offset_lstm_dim = 32
        self.dyreg = DynamicGraph(dyreg_params,
                    backbone_dim=32, node_dim=32, out_num_ch=32,
                    H=16, W=16, 
                    iH=16, iW=16,
                    project_i3d=False,
                    name='lalalal')


        self.fc = torch.nn.Linear(32, 10)

    def forward(self, x):
        dx = self.dyreg(x)
        # you can initialize the dyreg branch as identity function by normalisation, 
        #   as done in DynamicGraphWrapper found in ./ops/dyreg.py 
        x = x + dx
        # average over time and space: T, H, W
        x = x.mean(-1).mean(-1).mean(-2)
        x = self.fc(x)
        return x


B = 8
T = 10
C = 32
H = 16
W = 16
x = torch.ones(B,T,C,H,W)
st_model = SpaceTimeModel()
out = st_model(x)

For another example of how to integrate DyReg (DynamicGraph module) inside your model please look at create_model.py or run:

python create_model.py

Something-Something experiments

Training a model

To train a model on smt-smt v2 dataset please run

./start_main_standard.sh model_name

For default hyperparameters check opts.py. For example, place_graph flag controls how many DyReg-GNN modules to use and where to place them inside the backbone:

# for a model with 3 DyReg-GNN modules placed after layer 2-block 2, layer 3-block 4 and layer 4-block 1 of the backbone
--place_graph=layer2.2_layer3.4_layer4.1 
# for a model with 1 dyreg module placed after layer 3 block 4 of the backbone
--place_graph=layer3.4                   

Single clip evaluation

Train a model with the above script or download a pre-trained DyReg-GNN model from here and put the checkpoint in ./ckeckpoints/

To evaluate a model on smt-smt v2 dataset on a single 224 x 224 central crop, run:

./start_main_standard_test.sh model_name

The flag $RESUME_CKPT indicate the the checkpoint used for evaluation.

Multi clips evaluation

To evaluate a model in the multi-clips setup (3 spatials clips x 2 temporal samplings) on Smt-Smt v2 dataset please run

./evaluate_model.sh model_name

The flag $RESUME_CKPT indicate the the checkpoint used for evaluation.

TSM Baseline

This repository adds DyReg-GNN modules to a TSM backbone based on code from here.

Owner
Bitdefender Machine Learning
Machine Learning Research @ Bitdefender
Bitdefender Machine Learning
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Isht Dwivedi 601 Dec 22, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022