Semi-Supervised Learning, Object Detection, ICCV2021

Overview

End-to-End Semi-Supervised Object Detection with Soft Teacher

PWC PWC PWC PWC PWC PWC PWC

By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai, Zicheng Liu.

This repo is the official implementation of ICCV2021 paper "End-to-End Semi-Supervised Object Detection with Soft Teacher".

Citation

@article{xu2021end,
  title={End-to-End Semi-Supervised Object Detection with Soft Teacher},
  author={Xu, Mengde and Zhang, Zheng and Hu, Han and Wang, Jianfeng and Wang, Lijuan and Wei, Fangyun and Bai, Xiang and Liu, Zicheng},
  journal={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

Main Results

Partial Labeled Data

We followed STAC[1] to evaluate on 5 different data splits for each setting, and report the average performance of 5 splits. The results are shown in the following:

1% labeled data

Method mAP Model Weights Config Files
Baseline 10.0 - Config
Ours (thr=5e-2) 21.62 Drive Config
Ours (thr=1e-3) 22.64 Drive Config

5% labeled data

Method mAP Model Weights Config Files
Baseline 20.92 - Config
Ours (thr=5e-2) 30.42 Drive Config
Ours (thr=1e-3) 31.7 Drive Config

10% labeled data

Method mAP Model Weights Config Files
Baseline 26.94 - Config
Ours (thr=5e-2) 33.78 Drive Config
Ours (thr=1e-3) 34.7 Drive Config

Full Labeled Data

Faster R-CNN (ResNet-50)

Model mAP Model Weights Config Files
Baseline 40.9 - Config
Ours (thr=5e-2) 44.05 Drive Config
Ours (thr=1e-3) 44.6 Drive Config
Ours* (thr=5e-2) 44.5 - Config
Ours* (thr=1e-3) 44.9 - Config

Faster R-CNN (ResNet-101)

Model mAP Model Weights Config Files
Baseline 43.8 - Config
Ours* (thr=5e-2) 46.8 - Config
Ours* (thr=1e-3) 47.3 - Config

Notes

  • Ours* means we use longer training schedule.
  • thr indicates model.test_cfg.rcnn.score_thr in config files. This inference trick was first introduced by Instant-Teaching[2].
  • All models are trained on 8*V100 GPUs

Usage

Requirements

  • Ubuntu 16.04
  • Anaconda3 with python=3.6
  • Pytorch=1.9.0
  • mmdetection=2.16.0+fe46ffe
  • mmcv=1.3.9
  • wandb=0.10.31

Notes

  • We use wandb for visualization, if you don't want to use it, just comment line 273-284 in configs/soft_teacher/base.py.

Installation

make install

Data Preparation

  • Download the COCO dataset
  • Execute the following command to generate data set splits:
# YOUR_DATA should be a directory contains coco dataset.
# For eg.:
# YOUR_DATA/
#  coco/
#     train2017/
#     val2017/
#     unlabeled2017/
#     annotations/
ln -s ${YOUR_DATA} data
bash tools/dataset/prepare_coco_data.sh conduct

Training

  • To train model on the partial labeled data setting:
# JOB_TYPE: 'baseline' or 'semi', decide which kind of job to run
# PERCENT_LABELED_DATA: 1, 5, 10. The ratio of labeled coco data in whole training dataset.
# GPU_NUM: number of gpus to run the job
for FOLD in 1 2 3 4 5;
do
  bash tools/dist_train_partially.sh <JOB_TYPE> ${FOLD} <PERCENT_LABELED_DATA> <GPU_NUM>
done

For example, we could run the following scripts to train our model on 10% labeled data with 8 GPUs:

for FOLD in 1 2 3 4 5;
do
  bash tools/dist_train_partially.sh semi ${FOLD} 10 8
done
  • To train model on the full labeled data setting:
bash tools/dist_train.sh <CONFIG_FILE_PATH> <NUM_GPUS>

For example, to train ours R50 model with 8 GPUs:

bash tools/dist_train.sh configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_720k.py 8

Evaluation

bash tools/dist_test.sh <CONFIG_FILE_PATH> <CHECKPOINT_PATH> <NUM_GPUS> --eval bbox --cfg-options model.test_cfg.rcnn.score_thr=<THR>

Inference

To inference with trained model and visualize the detection results:

# [IMAGE_FILE_PATH]: the path of your image file in local file system
# [CONFIG_FILE]: the path of a confile file
# [CHECKPOINT_PATH]: the path of a trained model related to provided confilg file.
# [OUTPUT_PATH]: the directory to save detection result
python demo/image_demo.py [IMAGE_FILE_PATH] [CONFIG_FILE] [CHECKPOINT_PATH] --output [OUTPUT_PATH]

For example:

  • Inference on single image with provided R50 model:
python demo/image_demo.py /tmp/tmp.png configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_720k.py work_dirs/downloaded.model --output work_dirs/

After the program completes, a image with the same name as input will be saved to work_dirs

  • Inference on many images with provided R50 model:
python demo/image_demo.py '/tmp/*.jpg' configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_720k.py work_dirs/downloaded.model --output work_dirs/

[1] A Simple Semi-Supervised Learning Framework for Object Detection

[2] Instant-Teaching: An End-to-End Semi-SupervisedObject Detection Framework

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
LinkNet - This repository contains our Torch7 implementation of the network developed by us at e-Lab.

LinkNet This repository contains our Torch7 implementation of the network developed by us at e-Lab. You can go to our blogpost or read the article Lin

e-Lab 158 Nov 11, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022