3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

Overview

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

This repository contains the source code and dataset for the paper 3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos by Zipeng Ye, Mengfei Xia, Yanan Sun, Ran Yi, Minjing Yu, Juyong Zhang, Yu-Kun Lai and Yong-Jin Liu, which is accepted by IEEE Transactions on Visualization and Computer Graphics (TVCG).

This repository contains two parts: dataset and source code.

2D and 3D Caricature Dataset

2D Caricature Dataset

2d_dataset

We collect 5,343 hand-drawn portrait caricature images from Pinterest.com and WebCaricature dataset with facial landmarks extracted by a landmark detector, followed by human interaction for correction if needed.

The 2D dataset is in cari_2D_dataset.zip file.

3D Caricature Dataset

3d_dataset

We use the method to generate 5,343 3D caricature meshes of the same topology. We align the pose of the generated 3D caricature meshes with the pose of a template 3D head using an ICP method, where we use 5 key landmarks in eyes, nose and mouth as the landmarks for ICP. We normalize the coordinates of the 3D caricature mesh vertices by translating the center of meshes to the origin and scaling them to the same size.

The 3D dataset is in cari_3D_dataset.zip file.

3DCariPCA

We use the 3D caricature dataset to build a PCA model. We use sklearn.decomposition.PCA to build 3DCariPCA. The PCA model is pca200_icp.model file. You could use joblib to load the model and use it.

Download

You can download the two datasets and PCA in google drive and BaiduYun (code: 3kz8).

Source Code

Running Environment

Ubuntu 16.04 + Python3.7

You can install the environment directly by using conda env create -f env.yml in conda.

Training

We use our 3D caricature dataset and CelebA-Mask-HQ dataset to train 3D-CariGAN. You could download CelebA-Mask-HQ dataset and then reconstruct their 3D normal heads of all images. The 3D normal heads are for calculating loss.

Inferring

The inferring code is cari_pipeline.py file in pipeline folder. You could train your model or use our pre-trained model.

The pipeline includes two optional sub-program eye_complete and color_complete, which are implemented by C++. You should compile them and then use them. The eye_complete is for completing the eye part of mesh and the color_complete is for texture completion.

Pre-trained Model

You can download pre-trained model latest.pth in google drive and BaiduYun (code: 3kz8). You should put it into ./checkpoints.

Additional notes

Please cite the following paper if the dataset and code help your research:

Citation:

@article{ye2021caricature,
 author = {Ye, Zipeng and Xia, Mengfei and Sun, Yanan and Yi, Ran and Yu, Minjing and Zhang, Juyong and Lai, Yu-Kun and Liu, Yong-Jin},
 title = {3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos},
 journal = {IEEE Transactions on Visualization and Computer Graphics},
 year = {2021},
 doi={10.1109/TVCG.2021.3126659},
}

The paper will be published.

TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
190 Jan 03, 2023
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022