Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Overview

OrthoHash

ArXiv (pdf)

Official pytorch implementation of the paper: "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

NeurIPS 2021

Released on September 29, 2021

Description

This paper proposes a novel deep hashing model with only a single learning objective which is a simplification from most state of the art papers generally use lots of losses and regularizer. Specifically, it maximizes the cosine similarity between the continuous codes and their corresponding binary orthogonal codes to ensure both the discriminative capability of hash codes and the quantization error minimization. Besides, it adopts a Batch Normalization layer to ensure code balance and leverages the Label Smoothing strategy to modify the Cross-Entropy loss to tackle multi-labels classification. Extensive experiments show that the proposed method achieves better performance compared with the state-of-the-art multi-loss hashing methods on several benchmark datasets.

How to run

Training

python main.py --codebook-method B --ds cifar10 --margin 0.3 --seed 59495

Run python main.py --help to check what hyperparameters to run with. All the hyperparameters are the default parameters to get the performance in the paper.

The above command should obtain mAP of 0.824 at best for CIFAR-10.

Testing

python val.py -l /path/to/logdir

Dataset

Category-level Retrieval (ImageNet, NUS-WIDE, MS-COCO)

You may refer to this repo (https://github.com/swuxyj/DeepHash-pytorch) to download the datasets. I was using the same dataset format as HashNet. See utils/datasets.py to understand how to save the data folder.

Dataset sample: https://raw.githubusercontent.com/swuxyj/DeepHash-pytorch/master/data/imagenet/test.txt

For CIFAR-10, the code will auto generate a dataset at the first run. See utils/datasets.py.

Instance-level Retrieval (GLDv2, ROxf, RPar)

This code base is a simplified version and we did not include everything yet. We will release a version that will include the dataset we have generated and also the corresponding evaluation metrics, stay tune.

Performance Tuning (Some Tricks)

I have found some tricks to further improve the mAP score.

Avoid Overfitting

As set by the previous protocols, the dataset is small in size (e.g., 13k training images for ImageNet100) and hence overfitting can easily happen during the training.

An appropriate learning rate for backbone

We set a 10x lower learning rate for the backbone to avoid overfitting.

Cosine Margin

An appropriate higher cosine margin should be able to get higher performance as it slow down the overfitting.

Data Augmentation

We did not tune the data augmentation, but we believe that appropriate data augmentation can obtain a little bit of improvement in mAP.

Database Shuffling

If you shuffle the order of database before calculate_mAP, you might get 1~2% improvement in mAP.

It is because many items with same hamming distance will not be sorted properly, hence it will affect the mAP calculation.

Codebook Method

Run with --codebook-method O might help to improve mAP by 1~2%. The improvement is explained in our paper.

Feedback

Suggestions and opinions on this work (both positive and negative) are greatly welcomed. Please contact the authors by sending an email to jiuntian at gmail.com or kamwoh at gmail.com or cs.chan at um.edu.my.

Related Work

  1. Deep Polarized Network (DPN) - (https://github.com/kamwoh/DPN)

Notes

  1. You may get slightly different performance as compared with the paper, the random seed sometime affect the performance a lot, but should be very close.
  2. I re-run the training (64-bit ImageNet100) with this simplified version can obtain 0.709~0.710 on average (paper: 0.711).

License and Copyright

The project is open source under BSD-3 license (see the LICENSE file).

©2021 Universiti Malaya.

Owner
Ng Kam Woh
- Deep Learning Beginner
Ng Kam Woh
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022