Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Overview

Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstruction for Event Cameras via Photometric Constancy, CVPR'21.

Usage

This project uses Python >= 3.7.3. After setting up your virtual environment, please install the required python libraries through:

pip install -r requirements.txt

Code is formatted with Black (PEP8) using a pre-commit hook. To configure it, run:

pre-commit install

Data format

Similarly to researchers from Monash University, this project processes events through the HDF5 data format. Details about the structure of these files can be found in datasets/tools/.

Inference

Download our pre-trained models from here.

Our HDF5 version of sequences from the Event Camera Dataset can also be downloaded from here for evaluation purposes.

To estimate optical flow from the input events:

python eval_flow.py 
   

   

 

To perform image reconstruction from the input events:

python eval_reconstruction.py 
   

   

 

In configs/, you can find the configuration files associated to these scripts and vary the inference settings (e.g., number of input events, dataset).

Training

Our framework can be trained using any event camera dataset. However, if you are interested in using our training data, you can download it from here. The datasets are expected at datasets/data/, but this location can be modified in the configuration files.

To train an image reconstruction and optical flow model, you need to adapt the training settings in configs/train_reconstruction.yml. Here, you can choose the training dataset, the number of input events, the neural networks to be used (EV-FlowNet or FireFlowNet for optical flow; E2VID or FireNet for image reconstruction), the number of epochs, the optimizer and learning rate, etc. To start the training from scratch, run:

python train_reconstruction.py

Alternatively, if you have a model that you would like to keep training from, you can use

python train_reconstruction.py --prev_model 
   

   

This is handy if, for instance, you just want to train the image reconstruction model and use a pre-trained optical flow network. For this, you can set train_flow: False in configs/train_reconstruction.yml, and run:

python train_reconstruction.py --prev_model 
   

   

If you just want to train an optical flow network, adapt configs/train_flow.yml, and run:

python train_flow.py

Note that we use MLflow to keep track of all the experiments.

Citations

If you use this library in an academic context, please cite the following:

@article{paredes2020back,
  title={Back to Event Basics: Self-Supervised Learning of Image Reconstruction for Event Cameras via Photometric Constancy},
  author={Paredes-Vall{\'e}s, Federico and de Croon, Guido C. H. E.},
  journal={arXiv preprint arXiv:2009.08283},
  year={2020}
}

Acknowledgements

This code borrows from the following open source projects, whom we would like to thank:

Owner
TU Delft
TU Delft - MAVLab
TU Delft
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]

USD-Seg This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector f

Ruolin Ye 80 Nov 28, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Synthetic structured data generators

Join us on What is Synthetic Data? Synthetic data is artificially generated data that is not collected from real world events. It replicates the stati

YData 850 Jan 07, 2023
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022