Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Overview

Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstruction for Event Cameras via Photometric Constancy, CVPR'21.

Usage

This project uses Python >= 3.7.3. After setting up your virtual environment, please install the required python libraries through:

pip install -r requirements.txt

Code is formatted with Black (PEP8) using a pre-commit hook. To configure it, run:

pre-commit install

Data format

Similarly to researchers from Monash University, this project processes events through the HDF5 data format. Details about the structure of these files can be found in datasets/tools/.

Inference

Download our pre-trained models from here.

Our HDF5 version of sequences from the Event Camera Dataset can also be downloaded from here for evaluation purposes.

To estimate optical flow from the input events:

python eval_flow.py 
   

   

 

To perform image reconstruction from the input events:

python eval_reconstruction.py 
   

   

 

In configs/, you can find the configuration files associated to these scripts and vary the inference settings (e.g., number of input events, dataset).

Training

Our framework can be trained using any event camera dataset. However, if you are interested in using our training data, you can download it from here. The datasets are expected at datasets/data/, but this location can be modified in the configuration files.

To train an image reconstruction and optical flow model, you need to adapt the training settings in configs/train_reconstruction.yml. Here, you can choose the training dataset, the number of input events, the neural networks to be used (EV-FlowNet or FireFlowNet for optical flow; E2VID or FireNet for image reconstruction), the number of epochs, the optimizer and learning rate, etc. To start the training from scratch, run:

python train_reconstruction.py

Alternatively, if you have a model that you would like to keep training from, you can use

python train_reconstruction.py --prev_model 
   

   

This is handy if, for instance, you just want to train the image reconstruction model and use a pre-trained optical flow network. For this, you can set train_flow: False in configs/train_reconstruction.yml, and run:

python train_reconstruction.py --prev_model 
   

   

If you just want to train an optical flow network, adapt configs/train_flow.yml, and run:

python train_flow.py

Note that we use MLflow to keep track of all the experiments.

Citations

If you use this library in an academic context, please cite the following:

@article{paredes2020back,
  title={Back to Event Basics: Self-Supervised Learning of Image Reconstruction for Event Cameras via Photometric Constancy},
  author={Paredes-Vall{\'e}s, Federico and de Croon, Guido C. H. E.},
  journal={arXiv preprint arXiv:2009.08283},
  year={2020}
}

Acknowledgements

This code borrows from the following open source projects, whom we would like to thank:

Owner
TU Delft
TU Delft - MAVLab
TU Delft
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023