A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

Overview

The GatedTabTransformer.

A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. Check out our paper on arXiv.

Architecture

Usage

import torch
import torch.nn as nn
from gated_tab_transformer import GatedTabTransformer

model = GatedTabTransformer(
    categories = (10, 5, 6, 5, 8),      # tuple containing the number of unique values within each category
    num_continuous = 10,                # number of continuous values
    transformer_dim = 32,               # dimension, paper set at 32
    dim_out = 1,                        # binary prediction, but could be anything
    transformer_depth = 6,              # depth, paper recommended 6
    transformer_heads = 8,              # heads, paper recommends 8
    attn_dropout = 0.1,                 # post-attention dropout
    ff_dropout = 0.1,                   # feed forward dropout
    mlp_act = nn.LeakyReLU(0),          # activation for final mlp, defaults to relu, but could be anything else (selu, etc.)
    mlp_depth=4,                        # mlp hidden layers depth
    mlp_dimension=32,                   # dimension of mlp layers
    gmlp_enabled=True                   # gmlp or standard mlp
)

x_categ = torch.randint(0, 5, (1, 5))   # category values, from 0 - max number of categories, in the order as passed into the constructor above
x_cont = torch.randn(1, 10)             # assume continuous values are already normalized individually

pred = model(x_categ, x_cont)
print(pred)

Citation

@misc{cholakov2022gatedtabtransformer,
      title={The GatedTabTransformer. An enhanced deep learning architecture for tabular modeling}, 
      author={Radostin Cholakov and Todor Kolev},
      year={2022},
      eprint={2201.00199},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
@software{GatedTabTransformer,
  author = {{Radostin Cholakov, Todor Kolev}},
  title = {The GatedTabTransformer.},
  url = {https://github.com/radi-cho/GatedTabTransformer},
  version = {0.0.1},
  date = {2021-12-15},
}
Owner
Radi Cho
10th grader, coding for more than 6 years now ;) Looking forward the next big thing!
Radi Cho
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022