Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

Overview

alt text

The Face Synthetics dataset

Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

It was introduced in our paper Fake It Till You Make It: Face analysis in the wild using synthetic data alone.

Our dataset contains:

  • 100,000 images of faces at 512 x 512 pixel resolution
  • 70 standard facial landmark annotations
  • per-pixel semantic class anotations

It can be used to train machine learning systems for face-related tasks such as landmark localization and face parsing, showing that synthetic data can both match real data in accuracy as well as open up new approaches where manual labelling would be impossible.

Some images also include hands and off-center distractor faces in addition to primary faces centered in the image.

The Face Synthetics dataset can be used for non-commercial research, and is licensed under the license found in LICENSE.txt.

Downloading the dataset

A sample dataset with 100 images (34MB) can be downloaded from here

A sample dataset with 1000 images (320MB) can be downloaded from here

A full dataset of 100,000 images (32GB) can be downloaded from here

Dataset layout

The Face Synthetics dataset is a single .zip file containing color images, segmentation images, and 2D landmark coordinates in a text file.

dataset.zip
├── {frame_id}.png        # Rendered image of a face
├── {frame_id}_seg.png    # Segmentation image, where each pixel has an integer value mapping to the categories below
├── {frame_id}_ldmks.txt  # Landmark annotations for 70 facial landmarks (x, y) coordinates for every row

Our landmark annotations follow the 68 landmark scheme from iBUG with two additional points for the pupil centers. Please note that our 2D landmarks are projections of 3D points and do not follow the outline of the face/lips/eyebrows in the way that is common from manually annotated landmarks. They can be thought of as an "x-ray" version of 2D landmarks.

Each pixel in the segmentation image will belong to one of the following classes:

BACKGROUND = 0
SKIN = 1
NOSE = 2
RIGHT_EYE = 3
LEFT_EYE = 4
RIGHT_BROW = 5
LEFT_BROW = 6
RIGHT_EAR = 7
LEFT_EAR = 8
MOUTH_INTERIOR = 9
TOP_LIP = 10
BOTTOM_LIP = 11
NECK = 12
HAIR = 13
BEARD = 14
CLOTHING = 15
GLASSES = 16
HEADWEAR = 17
FACEWEAR = 18
IGNORE = 255

Pixels marked as IGNORE should be ignored during training.

Notes:

  • Opaque eyeglass lenses are labeled as GLASSES, while transparent lenses as the class behind them.
  • For bushy eyebrows, a few eyebrow pixels may extend beyond the boundary of the face. These pixels are labelled as IGNORE.

Disclaimer

Some of our rendered faces may be close in appearance to the faces of real people. Any such similarity is naturally unintentional, as it would be in a dataset of real images, where people may appear similar to others unknown to them.

Generalization to real data

For best results, we suggest you follow the methodology described in our paper (citation below). Especially note the need for 1) data augmentation; 2) use of a translation layer if evaluating on real data benchmarks that contain different types of annotations.

Our dataset strives to be as diverse as possible and generalizes to real test data as described in the paper. However, you may encounter situations that it does not cover and/or where generalization is less successful. We recommend that machine learning practitioners always test models on real data that is representative of the target deployment scenario.

Citation

If you use the Face Synthetics Dataset your research, please cite the following paper:

@misc{wood2021fake,
    title={Fake It Till You Make It: Face analysis in the wild using synthetic data alone},
    author={Erroll Wood and Tadas Baltru\v{s}aitis and Charlie Hewitt and Sebastian Dziadzio and Matthew Johnson and Virginia Estellers and Thomas J. Cashman and Jamie Shotton},
    year={2021},
    eprint={2109.15102},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022