An end-to-end machine learning library to directly optimize AUC loss

Overview

LibAUC

An end-to-end machine learning library for AUC optimization.

Why LibAUC?

Deep AUC Maximization (DAM) is a paradigm for learning a deep neural network by maximizing the AUC score of the model on a dataset. There are several benefits of maximizing AUC score over minimizing the standard losses, e.g., cross-entropy.

  • In many domains, AUC score is the default metric for evaluating and comparing different methods. Directly maximizing AUC score can potentially lead to the largest improvement in the model’s performance.
  • Many real-world datasets are usually imbalanced . AUC is more suitable for handling imbalanced data distribution since maximizing AUC aims to rank the predication score of any positive data higher than any negative data

Links

Installation

$ pip install libauc

Usage

Official Tutorials:

  • 01.Creating Imbalanced Benchmark Datasets [Notebook][Script]
  • 02.Training ResNet20 with Imbalanced CIFAR10 [Notebook][Script]
  • 03.Training with Pytorch Learning Rate Scheduling [Notebook][Script]
  • 04.Training with Imbalanced Datasets on Distributed Setting [Coming soon]

Quickstart for beginner:

>>> #import library
>>> from libauc.losses import AUCMLoss
>>> from libauc.optimizers import PESG
...
>>> #define loss
>>> Loss = AUCMLoss(imratio=0.1)
>>> optimizer = PESG(imratio=0.1)
...
>>> #training
>>> model.train()    
>>> for data, targets in trainloader:
>>>	data, targets  = data.cuda(), targets.cuda()
        preds = model(data)
        loss = Loss(preds, targets) 
        optimizer.zero_grad()
        loss.backward(retain_graph=True)
        optimizer.step()
...	
>>> #restart stage
>>> optimizer.update_regularizer()		
...   
>>> #evaluation
>>> model.eval()    
>>> for data, targets in testloader:
	data, targets  = data.cuda(), targets.cuda()
        preds = model(data)

Please visit our website or github for more examples.

Citation

If you find LibAUC useful in your work, please cite the following paper:

@article{yuan2020robust,
title={Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification},
author={Yuan, Zhuoning and Yan, Yan and Sonka, Milan and Yang, Tianbao},
journal={arXiv preprint arXiv:2012.03173},
year={2020}
}

Contact

If you have any questions, please contact us @ Zhuoning Yuan [[email protected]] and Tianbao Yang [[email protected]] or please open a new issue in the Github.

Comments
  • Only compatible with Nvidia GPU

    Only compatible with Nvidia GPU

    I tried running the example tutorial but I got the following error. ''' AssertionError: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx '''

    opened by Beckham45 2
  • Extend to Multi-class Classification Task and Be compatible with PyTorch scheduler

    Extend to Multi-class Classification Task and Be compatible with PyTorch scheduler

    Hi Zhuoning,

    This is an interesting work! I am wondering if the DAM method can be extended to a multi-class classification task with long-tailed imbalanced data. Intuitively, this should be possible as the famous sklearn tool provides auc score for multi-class setting by using one-versus-rest or one-versus-one technique.

    Besides, it seems that optimizer.update_regularizer() is called only when the learning rate is reduced, thus it would be more elegant to incorporate this functional call into a pytorch lr scheduler. E.g.,

    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
    scheduler.step()    # override the step to fulfill: optimizer.update_regularizer()
    
    

    For current libauc version, the PESG optimizer is not compatible with schedulers in torch.optim.lr_scheduler . It would be great if this feature can be supported in the future.

    Thanks for your work!

    opened by Cogito2012 2
  • When to use retain_graph=True?

    When to use retain_graph=True?

    Hi,

    When to use retain_graph=True in the loss backward function?

    In 2 examples (2 and 4), it is True. But not in the other examples.

    I appreciate your time.

    opened by dfrahman 1
  • Using AUCMLoss with imratio>1

    Using AUCMLoss with imratio>1

    I'm not very familiar with the maths in the paper so please forgive me if i'm asking something obvious.

    The AUCMLoss uses the "imbalance ratio" between positive and negative samples. The ratio is defined as

    the ratio of # of positive examples to the # of negative examples

    Or imratio=#pos/#neg

    When #pos<#neg, imratio is some value between 0 and 1. But when #pos>#neg, imratio>1

    Will this break the loss calculations? I have a feeling it would invalidate the many 1-self.p calculations in the LibAUC implementation, but as i'm not familiar with the maths I can't say for sure.

    Also, is there a problem (mathematically speaking) with calculating imratio=#pos/#total_samples, to avoid the problem above? When #pos<<#neg, #neg approximates #total_samples.

    opened by ayhyap 1
  • AUCMLoss does not use margin argument

    AUCMLoss does not use margin argument

    I noticed in the AUCMLoss class that the margin argument is not used. Following the formulation in the paper, the forward function should be changed in line 20 from 2*self.alpha*(self.p*(1-self.p) + \ to 2*self.alpha*(self.p*(1-self.p)*self.margin + \

    opened by ayhyap 1
  • How to train multi-label classification tasks? (like chexpert)

    How to train multi-label classification tasks? (like chexpert)

    I have started using this library and I've read your paper Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification, and I'm still not sure how to train a multi-label classification (MLC) model.

    Specifically, how did you fine-tune for the Chexpert multi-label classification task? (i.e. classify 5 diseases, where each image may have presence of 0, 1 or more diseases)

    • The first step pre-training with Cross-entropy loss seems clear to me
    • You mention: "In the second step of AUC maximization, we replace the last classifier layer trained in the first step by random weights and use our DAM method to optimize the last classifier layer and all previous layers.". The new classifier layer is a single or multi-label classifier?
    • In the Appendix I, figure 7 shows only one score as output for Deep AUC maximization (i.e. only one disease)
    • In the code, both AUCMLoss() and APLoss_SH() receive single-label outputs, not multi-label outputs, apparently

    How do you train for the 5 diseases? Train sequentially Cardiomegaly, then Edema, and so on? or with 5 losses added up? or something else?

    opened by pdpino 4
  • Example for tensorflow

    Example for tensorflow

    Thank you for the great library. Does it currently support tensorflow? If so, could you provide an example of how it can be used with tensorflow? Thank you very much

    opened by Kokkini 1
Releases(1.1.4)
  • 1.1.4(Jul 26, 2021)

    What's New

    • Added PyTorch dataloader for CheXpert dataset. Tutorial for training CheXpert is available here.
    • Added support for training AUC loss on CPU machines. Note that please remove lines with .cuda() from the code.
    • Fixed some bugs and improved the training stability
    Source code(tar.gz)
    Source code(zip)
  • 1.1.3(Jun 16, 2021)

  • 1.1.2(Jun 14, 2021)

    What's New

    1. Add SOAP optimizer contributed by @qiqi-helloworld @yzhuoning for optimizing AUPRC. Please check the tutorial here.
    2. Update ResNet18, ResNet34 with pretrained models on ImageNet1K
    3. Add new strategy for AUCM Loss: imratio is calculated over a mini-batch if initial value is not given
    4. Fixed some bugs and improved the training stability
    Source code(tar.gz)
    Source code(zip)
  • V1.1.0(May 10, 2021)

    What's New:

    • Fixed some bugs and improved the training stability
    • Changed default settings in loss function for binary labels to be 0 and 1
    • Added Pytorch dataloaders for CIFAR10, CIFAR100, CAT_vs_Dog, STL10
    • Enabled training DAM with Pytorch leanring scheduler, e.g., ReduceLROnPlateau, CosineAnnealingLR
    Source code(tar.gz)
    Source code(zip)
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022