PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

Overview

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

This repository contains the implementation of MSBG hearing loss model and MBSTOI intellibility metric in PyTorch. The models are differentiable and can be used as a loss function to train a neural network. Both models follow Python implementation of MSBG and MBSTOI provided by organizers of Clarity Enhancement challenge. Please check the implementation at Clarity challenge repository for more information about the models.

Please note that the differentiable models are approximations of the original models and are intended to be used to train neural networks, not to give exactly the same outputs as the original models.

Requirements and installation

The model uses parts of the functionality of the original MSBG and MBSTOI models. First, download the Clarity challenge repository and set its location as CLARITY_ROOT. To install the necessary requirements:

pip install -r requirements.txt
pushd .
cd $CLARITY_ROOT/projects/MSBG/packages/matlab_mldivide
python setup.py install
popd

Additionally, set paths to the Clarity repository and this repository in path.sh and run the path.sh script before using the provided modules.

. path.sh

Tests and example script

Directory tests contains scipts to test the correspondance of the differentiable modules compared to their original implementation. To run the tests, you need the Clarity data, which can be obtained from the Clarity challenge repository. Please set the paths to the data in the scripts.

MSBG test

The tests of the hearing loss compare the outputs of functions provided by the original implementation and the differentiable version. The output shows the mean differences of the output signals

Test measure_rms, mean difference 9.629646580133766e-09
Test src_to_cochlea_filt forward, mean difference 9.830486283616455e-16
Test src_to_cochlea_filt backward, mean difference 6.900756131702976e-15
Test smear, mean difference 0.00019685214410863303
Test gammatone_filterbank, mean difference 5.49958965492409e-07
Test compute_envelope, mean difference 4.379759604381869e-06
Test recruitment, mean difference 3.1055169855373764e-12
Test cochlea, mean difference 2.5698933453410134e-06
Test hearing_loss, mean difference 2.2326804706160673e-06

MBSTOI test

The test of the intelligbility metric compares the MBSTOI values obtained by the original and differentiable model over the development set of Clarity challenge. The following graph shows the comparison. Correspondance of MBSTOI metrics.

Example script

The script example.py shows how to use the provided module as a loss function for training the neural network. In the script, we use a simple small model and overfit on one example. The descreasing loss function confirms that the provided modules are differentiable.

Loss function with MSBG and MBSTOI loss

Citation

If you use this work, please cite:

@inproceedings{Zmolikova2021BUT,
  author    = {Zmolikova, Katerina and \v{C}ernock\'{y}, Jan "Honza"},
  title     = {{BUT system for the first Clarity enhancement challenge}},
  year      = {2021},
  booktitle = {The Clarity Workshop on Machine Learning Challenges for Hearing Aids (Clarity-2021)},
}
Owner
BUT <a href=[email protected]">
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023