Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Overview

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

This repository contains code and data for evaluating model performance in crosslinguistic low-resource settings, using morphological segmentation as the test case. For more information, we refer to the paper Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation, to appear in Transactions of the Association for Computational Linguistics.

Arxiv version here

@misc{liu2022datadriven,
      title={Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation}, 
      author={Zoey Liu and Emily Prud'hommeaux},
      year={2022},
      eprint={2201.01845},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Prerequisites

Install the following:

(1) Python 3

(2) Morfessor

(3) CRFsuite

(4) OpenNMT

Code

The code directory contains the code applied to conduct the experiments.

Collect initial data

Create a resource folder. This folder is supposed to hold the initial data for each language invited to participate in the experiments. The experiments were performed at different stages, therefore the initial data of different languages have different subdirectories within resource (please excuse this).

The data for three Mexican languages came from this paper.

(1) download the data from the public repository

(2) for each language, combine all the data from the training, development, and test set; this applies to both the *src files and the *tgt files.

(3) rename the combined data file as, e.g., Yorem Nokki: mayo_src, mayo_tgt, Nahuatl: nahuatl_src, nahuatl_tgt.

(4) put the data files within resource

The data for Persian came from here.

(1) download the data from the public repository

(2) combine the training, development, and test set to one data file

(3) rename the combined data file as persian

(4) put the single data file within resource

The data for German, Zulu and Indonesian came from this paper.

(1) download the data from the public repository

(2) put the downloaded supplement folder within resource

The data for English, Russian, Turkish and Finnish came from this repo.

(1) download the git repo

(2) put the downloaded NeuralMorphemeSegmentation folder within resource

Summary of (alternative) Language codes and data directories for running experiments

Yorem Nokki: mayo resources/

Nahuatl: nahuatl resources/

Wixarika: wixarika resources/

English: english/eng resources/NeuralMorphemeSegmentation/morphochal10data/

German: german/ger resources/supplement/seg/ger

Persian: persian resources/

Russian: russian/ru resources/NeuralMorphemeSegmentation/data/

Turkish: turkish/tur resources/NeuralMorphemeSegmentation/morphochal10data/

Finnish: finnish/fin resources/NeuralMorphemeSegmentation/morphochal10data/

Zulu: zulu/zul resources/supplement/seg/zul

Indonesian: indonesian/ind resources/supplement/seg/ind

Basic running of the code

Create experiments folder and subfolders for each language; e.g., Zulu

mkdir experiments

mkdir zulu

Generate data (an example)

with replacement, data size = 500

python3 code/segmentation_data.py --input resources/supplement/seg/zul/ --output experiments/zulu/ --lang zul --r with --k 500

without replacement, data size = 500

python3 code/segmentation_data.py --input resources/supplement/seg/zul/ --output experiments/zulu/ --lang zul --r without --k 500

Training models: Morfessor

Train morfessor models

python3 code/morfessor/morfessor.py --input experiments/zulu/500/with/ --lang zul

python3 code/morfessor/morfessor.py --input experiments/zulu/500/without/ --lang zul

Generate evaluation scrips for morfessor model results

python3 code/morf_shell.py --input experiments/zulu/500/ --lang zul

Evaluate morfessor model results

bash zulu_500_morf_eval.sh

Training models: CRF

Generate CRF shell script

e.g., generating 3-CRF shell script

python3 code/crf_order.py --input experiments/zulu/500/ --lang zul --r with --order 3

Training models: Seq2seq

Generate configuration .yaml files

python3 code/yaml.py --input experiments/zulu/500/ --lang zul --r with

python3 code/yaml.py --input experiments/zulu/500/ --lang zul --r without

Generate pbs file (containing also the code to train Seq2seq model)

python3 code/sirius.py --input experiments/zulu/500/ --lang zul --r with

python3 code/sirius.py --input experiments/zulu/500/ --lang zul --r without

Gather training results for a given language

Again take Zulu as an example. Make sure that given a data set size (e.g, 500) and a sampling method (e.g., with replacement), there are three subfolders in the folder experiments/zulu/500/with:

(1) morfessor for all *eval* files from Morfessor;

(2) higher_orders for all *eval* files from k-CRF;

(3) seq2seq for all *eval* files from Seq2seq

Then run:

python3 code/gather.py --input experiments/zulu/ --lang zul --short zulu.txt --full zulu_full.txt --long zulu_details.txt

Testing

Testing the best CRF

e.g., 4-CRFs trained from data sets sampled with replacement, for test sets of size 50

python3 code/testing_crf.py --input experiments/zulu/500/ --data resources/supplement/seg/zul/ --lang zul --n 100 --order 4 --r with --k 50

Testing the best Seq2seq

e.g., trained from data sets sampled with replacement, for test sets of size 50

python3 code/testing_seq2seq.py --input experiments/zulu/500/ --data resources/supplement/seg/zul/ --lang zul --n 100 --r with --k 50

Do the same for every language

Generating alternative splits

Gather features of data sets, as well as generate heuristic/adversarial data splits

python3 code/heuristics.py --input experiments/zulu/ --lang zul --output yayyy/ --split A --generate

Gather features of new unseen test sets

python3 code/new_test_heuristics.py --input experiments/zulu/ --output yayyy/ --lang zul

Yayyy: Full Results

Get them here

Running analyses and making plots

See code/plot.R for analysis and making fun plots

Owner
Zoey Liu
language, computation, music, food
Zoey Liu
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023