"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Related tags

Deep Learningblp
Overview

Inductive entity representations from text via link prediction





This repository contains the code used for the experiments in the paper "Inductive entity representations from text via link prediction", presented at The Web Conference, 2021. To refer to our work, please use the following:

@inproceedings{daza2021inductive,
    title = {Inductive Entity Representations from Text via Link Prediction},
    author = {Daniel Daza and Michael Cochez and Paul Groth},
    booktitle = {Proceedings of The Web Conference 2021},
    year = {2021},
    doi = {10.1145/3442381.3450141},
}

In this work, we show how a BERT-based text encoder can be fine-tuned with a link prediction objective, in a graph where entities have an associated textual description. We call the resulting model BLP. There are three interesting properties of a trained BLP model:

  • It can predict a link between entities, even if one or both were not present during training.
  • It produces useful representations for a classifier, that don't require retraining the encoder.
  • It improves an information retrieval system, by better matching entities and questions about them.

Usage

Please follow the instructions next to reproduce our experiments, and to train a model with your own data.

1. Install the requirements

Creating a new environment (e.g. with conda) is recommended. Use requirements.txt to install the dependencies:

conda create -n blp python=3.7
conda activate blp
pip install -r requirements.txt

2. Download the data

Download the required compressed datasets into the data folder:

Download link Size (compressed)
UMLS (small graph for tests) 121 KB
WN18RR 6.6 MB
FB15k-237 21 MB
Wikidata5M 1.4 GB
GloVe embeddings 423 MB
DBpedia-Entity 1.3 GB

Then use tar to extract the files, e.g.

tar -xzvf WN18RR.tar.gz

Note that the KG-related files above contain both transductive and inductive splits. Transductive splits are commonly used to evaluate lookup-table methods like ComplEx, while inductive splits contain entities in the test set that are not present in the training set. Files with triples for the inductive case have the ind prefix, e.g. ind-train.txt.

2. Reproduce the experiments

Link prediction

To check that all dependencies are correctly installed, run a quick test on a small graph (this should take less than 1 minute on GPU):

./scripts/test-umls.sh

The following table is a adapted from our paper. The "Script" column contains the name of the script that reproduces the experiment for the corresponding model and dataset. For example, if you want to reproduce the results of BLP-TransE on FB15k-237, run

./scripts/blp-transe-fb15k237.sh
WN18RR FB15k-237 Wikidata5M
Model MRR Script MRR Script MRR Script
GlovE-BOW 0.170 glove-bow-wn18rr.sh 0.172 glove-bow-fb15k237.sh 0.343 glove-bow-wikidata5m.sh
BE-BOW 0.180 bert-bow-wn18rr.sh 0.173 bert-bow-fb15k237.sh 0.362 bert-bow-wikidata5m.sh
GloVe-DKRL 0.115 glove-dkrl-wn18rr.sh 0.112 glove-dkrl-fb15k237.sh 0.282 glove-dkrl-wikidata5m.sh
BE-DKRL 0.139 bert-dkrl-wn18rr.sh 0.144 bert-dkrl-fb15k237.sh 0.322 bert-dkrl-wikidata5m.sh
BLP-TransE 0.285 blp-transe-wn18rr.sh 0.195 blp-transe-fb15k237.sh 0.478 blp-transe-wikidata5m.sh
BLP-DistMult 0.248 blp-distmult-wn18rr.sh 0.146 blp-distmult-fb15k237.sh 0.472 blp-distmult-wikidata5m.sh
BLP-ComplEx 0.261 blp-complex-wn18rr.sh 0.148 blp-complex-fb15k237.sh 0.489 blp-complex-wikidata5m.sh
BLP-SimplE 0.239 blp-simple-wn18rr.sh 0.144 blp-simple-fb15k237.sh 0.493 blp-simple-wikidata5m.sh

Entity classification

After training for link prediction, a tensor of embeddings for all entities is computed and saved in a file with name ent_emb-[ID].pt where [ID] is the id of the experiment in the database (we use Sacred to manage experiments). Another file called ents-[ID].pt contains entity identifiers for every row in the tensor of embeddings.

To ease reproducibility, we provide these tensors, which are required in the entity classification task. Click on the ID, download the file into the output folder, and decompress it. An experiment can be reproduced using the following command:

python train.py node_classification with checkpoint=ID dataset=DATASET

where DATASET is either WN18RR or FB15k-237. For example:

python train.py node_classification with checkpoint=199 dataset=WN18RR
WN18RR FB15k-237
Model Acc. ID Acc. Bal. ID
GloVe-BOW 55.3 219 34.4 293
BE-BOW 60.7 218 28.3 296
GloVe-DKRL 55.5 206 26.6 295
BE-DKRL 48.8 207 30.9 294
BLP-TransE 81.5 199 42.5 297
BLP-DistMult 78.5 200 41.0 298
BLP-ComplEx 78.1 201 38.1 300
BLP-SimplE 83.0 202 45.7 299

Information retrieval

This task runs with a pre-trained model saved from the link prediction task. For example, if the model trained is blp with transe and it was saved as model.pt, then run the following command to run the information retrieval task:

python retrieval.py with model=blp rel_model=transe \
checkpoint='output/model.pt'

Using your own data

If you have a knowledge graph where entities have textual descriptions, you can train a BLP model for the tasks of inductive link prediction, and entity classification (if you also have labels for entities).

To do this, add a new folder inside the data folder (let's call it my-kg). Store in it a file containing the triples in your KG. This should be a text file with one tab-separated triple per line (let's call it all-triples.tsv).

To generate inductive splits, you can use data/utils.py. If you run

python utils.py drop_entities --file=my-kg/all-triples.tsv

this will generate ind-train.tsv, ind-dev.tsv, ind-test.tsv inside my-kg (see Appendix A in our paper for details on how these are generated). You can then train BLP-TransE with

python train.py with dataset='my-kg'

Alternative implementations

Owner
Daniel Daza
PhD student at VU Amsterdam and the University of Amsterdam, working on machine learning and knowledge graphs.
Daniel Daza
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022