Underwater industrial application yolov5m6

Overview

underwater-industrial-application-yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Professional Contest and ranking 13 out of 31 teams in finals.

和鲸社区Kesci 水下光学目标检测产业应用赛项

环境:

mmdetection

+ 操作系统:Ubuntu 18.04.2
+ GPU:1块2080Ti
+ Python:Python 3.7.7
+ NVIDIA依赖:
    - NVCC: Cuda compilation tools, release 10.1, V10.1.243
    - CuDNN 7.6.5
+ 深度学习框架:
    - PyTorch: 1.8.1
    - TorchVision: 0.9.1
    - OpenCV
    - MMCV
    - MMDetection(注意data clean 的版本不同)

yolov5

训练环境:
	+ 操作系统:Ubuntu 18.04.2
	+ GPU:1块2080Ti
	+ Python:Python 3.7.7
测试环境:
	 NVIDIA Jetson AGX Xavier


# pip install -r requirements.txt

# base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
PyYAML>=5.3.1
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0

# logging -------------------------------------
tensorboard>=2.4.1
# wandb

# plotting ------------------------------------
seaborn>=0.11.0
pandas

# export --------------------------------------
# coremltools>=4.1
# onnx>=1.9.0
# scikit-learn==0.19.2  # for coreml quantization
# tensorflow==2.4.1  # for TFLite export

# extras --------------------------------------
# Cython  # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
# pycocotools>=2.0  # COCO mAP
# albumentations>=1.0.3
thop  # FLOPs computation

第一大步:@数据清理

文件说明:data_clean_Code用于数据清理

data_clean_Code/yangtiming-underwater-master ->为湛江赛拿第20名方案
data_clean_Code/underwater-detection-master  ->为triks团队湛江赛方案

使用说明

1. (这一步用我的yangtiming-underwater-master替代原有的cascade_rcnn_x101_64x4d_fpn_dcn_e15 )【原因精度更高A榜0.562】

模型采用 cascade_rcnn_x101_64x4d_fpn_dcn_e15  
+ Backbone:
    + ResNeXt101-64x4d
+ Neck:
    + FPN
+ DCN
+ Global context(GC)
+ MS [(4096, 600), (4096, 1000)]
+ RandomRotate90°
+ 15epochs + step:[11, 13]  
+ A榜:0.55040585 
    + 注:不是所有数据

2. 基于1训练好的模型对训练数据进行清洗(tools/data_process/data_clean.py)

+ 1. 如果某张图片上所有预测框的confidence没有一个是大于0.9, 那么去掉该图片(即看不清的图片)
+ 2. 修正错误标注
    + 1. 先过滤掉confidence<0.1的predict boxes, 然后同GT boxes求iou
    + 2. 如果predict box同GT的最大iou大于0.6,但类别不一致, 那么就修正该gt box的类别
trainall.json (与bbox1)修后的到   trainall-revised.json

3. 基于2修正后的数据进行训练->(基于2修正后的到 trainall-revised.json 修正采用cascade_rcnn_r50_rfp_sac后的到-> bbox3

模型采用cascade_rcnn_r50_rfp_sac
+ Backbone:
+ ResNet50
+ Neck:
RFP-SAC
+ GC + MS + RandomRotate90°
+ cascade_iou调整为:(0.55, 0.65, 0.75)
+ A榜: 0.56339531
+ 注:所有数据

4. 基于3训练好的模型进一步清洗数据.

->  trainall-revised-v3.json(与bbox3) 	进一步清洗数据 -> trainall-revised-v4.json)
+ 模型同3: 
+ A榜:0.56945031
    + 注:所有数据
在验证集上面测试精度:1. 执行完mAP0.5:0.95=0.547 4. 执行完mAP0.5:0.95 = 0.560

第二大步:@数据清理完毕后,改用yolov5 (code/yolov5_V5_chuli_focal_loss_attention)

使用背景介绍:
使用模型为yolov5m6系列,迭代tricks的时候,采取用--img 640 进行迭代

最优模型:

最终在yolov5m6上面的精度为:mAP0.5:0.95= 0.5374,agx速度0.2s每张
最好模型:
1.yolov5m6
2.数据清洗
2.attention模块:senet
3.hsv_h,hsv_s,hsv_v=0
4.focal_loss

使用的tricks如下:(按照时间顺序)

1.按照第一大步的数据清洗:由原来的mAP0.5:0.95= 0.465->0.4880
2.yolov5当中的hsv_h,hsv_s,hsv_v均设为0,mAP0.5:0.95= 0.4880 ->0.4940
3.在loss.py当中加入focal_loss损失函数(157行,172行),mAP0.5:0.95= 0.4940 ->0.4977
4.更改原有yolov5的c3层改为senet(attention模块),mAP0.5:0.95= 0.4977 -> 0.50069

以上按照

python train.py  --weights weights/yolov5m6.pt --cfg models/hub/yolov5m6-senet.yaml --data data/underwater.yaml  --hyp data/hyps/hyp.scratch-p6.yaml --epochs 100 --batch-size 25 --img 640

最终要提交的时候,按照

python train.py  --weights weights/yolov5m6.pt --cfg models/hub/yolov5m6-senet.yaml --data data/underwater.yaml  --hyp data/hyps/hyp.scratch-p6.yaml --epochs 250 --batch-size 4 --img 1280 --multi-scale

【注意:multi-scale大小可以在train.py文件夹下面更改】

测试

python3 val_tm_txt_csv.py --data  /data/underwater.yaml   --weights weights/best_05374.pt --img 1280 --save-txt --save-conf --half

【--half能提升速度(fp16),精度比fp32更高】

################

若要测试mAP,可以用 https://github.com/rafaelpadilla/review_object_detection_metrics.git

以下为比赛文档说明

若有权限问题,则执行前 chmod +x main_test.sh

1. 将测试集的图片放在本文件夹当中名字为test
2.最终结果将放在answer当中(执行后自动生成)
3.code文件夹为全部代码,以及包含训练权重
4.执行main_test.sh开始运行



(*)Q:何时开始计时?(注意:在执行main_test.sh之前命令窗口拉长,否则计时无法看到进度条)
当执行 python3 ./val_tm_txt_csv.py 时,看见如下界面表示计时开始
##                 Class     Images     Labels          P          R     [email protected] [email protected]:.95:   0%|          | 0/xxx [00:00

reference

+yolov5

+yangtiming/underwater-mmdetection

+team-tricks

Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022