Active Offline Policy Selection With Python

Overview

Active Offline Policy Selection

This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian Chen*, Tom Le Paine, Caglar Gulcehre, Cosmin Paduraru, Daniel J Mankowitz, Misha Denil, Nando de Freitas.

To simulate the active offline policy selection for a set of policies, one needs to provide a number of files. We provide the files for 76 policies on cartpole_swingup environemnt.

  1. Sampled episodic returns for all policies on a number of evalauation episodes (full-reward-samples-dict.pkl), or a way of sampling a new episode of evaluation upon request for any policy. The file full-reward-samples-dict.pkl contains a dictionary that maps a policy by its string representation to a numpy.ndarray of of shape (5000,) (number of reward samples).

  2. Off-policy evaluation score, such as fitted Q-evaluation (FQE) for all policies (ope_values.pkl). The file ope_values.pkl contains dictionary that maps policy info into OPE estimates. We provide FQE scores for the policies.

  3. Actions that policies take on 1000 randomly sampled states from the offline dataset (actions.pkl). The file actions.pkl contains a dictionary with keys actions and policy_keys. actions is a list of 1000 ( number of states used to compute the kernel) elements of numpy.ndarray type of dimensionality 76x1 (number of policies by the dimensionality of the actions). policy_keys contains a dictionary mapping from string representation of a policy to the index of that policy in actions.

Installation

To set up the virtual environment, run the following commands. From within the active_ops directory:

python3 -m venv active_ops_env
source active_ops_env/bin/activate

pip install --upgrade pip
pip install -r requirements.txt

To run the demo with colab, enable the jupyter_http_over_ws extension:

jupyter serverextension enable --py jupyter_http_over_ws

Finally, start a server:

jupyter notebook \
  --NotebookApp.allow_origin='https://colab.research.google.com' \
  --port=8888 \
  --NotebookApp.port_retries=0

Usage

To run the code refer to Active_ops_experiment.ipynb colab notebook. Execute blocks of code one by one to reproduce the final plot. You can modify various parameters maked by @param to test various baselines in modified settings. This code loads the example of data for cartpole_environment provided in the data folder. Using this data, we reproduce the results of Figure 14 of the paper.

Citing this work

@inproceedings{konyushkovachen2021aops,
    title = "Active Offline Policy Selection",
    author = "Ksenia Konyushkova, Yutian Chen, Tom Le Paine, Caglar Gulcehre, Cosmin Paduraru, Daniel J Mankowitz, Misha Denil, Nando de Freitas",
    booktitle = NeurIPS,
    year = 2021
}

Disclaimer

This is not an official Google product.

The datasets in this work are licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit [http://creativecommons.org/licenses/by/4.0/] (http://creativecommons.org/licenses/by/4.0/).

Owner
DeepMind
DeepMind
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Benchmarks for Object Detection in Aerial Images

Benchmarks for Object Detection in Aerial Images

Jian Ding 691 Dec 30, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023