Active Offline Policy Selection With Python

Overview

Active Offline Policy Selection

This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian Chen*, Tom Le Paine, Caglar Gulcehre, Cosmin Paduraru, Daniel J Mankowitz, Misha Denil, Nando de Freitas.

To simulate the active offline policy selection for a set of policies, one needs to provide a number of files. We provide the files for 76 policies on cartpole_swingup environemnt.

  1. Sampled episodic returns for all policies on a number of evalauation episodes (full-reward-samples-dict.pkl), or a way of sampling a new episode of evaluation upon request for any policy. The file full-reward-samples-dict.pkl contains a dictionary that maps a policy by its string representation to a numpy.ndarray of of shape (5000,) (number of reward samples).

  2. Off-policy evaluation score, such as fitted Q-evaluation (FQE) for all policies (ope_values.pkl). The file ope_values.pkl contains dictionary that maps policy info into OPE estimates. We provide FQE scores for the policies.

  3. Actions that policies take on 1000 randomly sampled states from the offline dataset (actions.pkl). The file actions.pkl contains a dictionary with keys actions and policy_keys. actions is a list of 1000 ( number of states used to compute the kernel) elements of numpy.ndarray type of dimensionality 76x1 (number of policies by the dimensionality of the actions). policy_keys contains a dictionary mapping from string representation of a policy to the index of that policy in actions.

Installation

To set up the virtual environment, run the following commands. From within the active_ops directory:

python3 -m venv active_ops_env
source active_ops_env/bin/activate

pip install --upgrade pip
pip install -r requirements.txt

To run the demo with colab, enable the jupyter_http_over_ws extension:

jupyter serverextension enable --py jupyter_http_over_ws

Finally, start a server:

jupyter notebook \
  --NotebookApp.allow_origin='https://colab.research.google.com' \
  --port=8888 \
  --NotebookApp.port_retries=0

Usage

To run the code refer to Active_ops_experiment.ipynb colab notebook. Execute blocks of code one by one to reproduce the final plot. You can modify various parameters maked by @param to test various baselines in modified settings. This code loads the example of data for cartpole_environment provided in the data folder. Using this data, we reproduce the results of Figure 14 of the paper.

Citing this work

@inproceedings{konyushkovachen2021aops,
    title = "Active Offline Policy Selection",
    author = "Ksenia Konyushkova, Yutian Chen, Tom Le Paine, Caglar Gulcehre, Cosmin Paduraru, Daniel J Mankowitz, Misha Denil, Nando de Freitas",
    booktitle = NeurIPS,
    year = 2021
}

Disclaimer

This is not an official Google product.

The datasets in this work are licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit [http://creativecommons.org/licenses/by/4.0/] (http://creativecommons.org/licenses/by/4.0/).

Owner
DeepMind
DeepMind
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022