Preparation material for Dropbox interviews

Overview

Dropbox-Onsite-Interviews

A guide for the Dropbox onsite interview!

The Dropbox interview question bank is very small. The bank has been in a Chinese forum for many years now, and we would like to make it accessible to everyone so that everyone will have an equal opportunity to prepare for the Dropbox onsite interview!

https://1o24bbs.com/t/topic/1381

Backup link: https://web.archive.org/web/20210224003004/https://1o24bbs.com/t/topic/1381


Behavioral Questions:

Talk about an impactful project that you led.

  • Teams that you collaborated with.
  • Convincing others to take action.
  • A tough decision that you had to make during that project.

A critical piece of feedback that you received from someone and what you did after that.

An important piece of feedback that you gave to someone else.

A conflict that you had with someone else.

How do you contribute to diversity and inclusion?


We do not ask for references and we do not check for references.


Coding and System Design Tips

As always, you must talk your way through the problem and explain your reasoning. You should ALWAYS talk about performance (system performance for system design and time/space complexity for the coding problems) and talk about testing, even if the interviewer does not prompt you to.

Coding Question List:

  1. Id Allocator - Create a class that can allocate and release ids. The image in the packet is wrong. Please see this image.

This question is EXTREMELY popular and is asked in most onsite interviews, even if you're not a recent graduate.

Solution

  1. Download File / BitTorrent - Create a class that will receive pieces of a file and tell whether the file can be assembled from the pieces.

This question is mostly for new graduates/phone screens.

  1. Game of Life - Conway's Game of Life - Problem on LeetCode

This question is EXTREMELY popular for phone screens.

Solution

  1. Hit Counter - Design a class to count the hits received by a webpage

This question is mostly on phone screens.

Solution

  1. Web Crawler - Design a web crawler, first single-threaded, then multithreaded.

This question is EXTREMELY popular for onsite interviews.

Solution

  1. Token Bucket

This question is somewhat popular for onsite interviews. It has a multi-threaded component.

Solution

  1. Search the DOM

This question is somewhat popular for roles with a large frontend component.

Question

  1. Space Panorama

Create an API to read and write files and maintain access to the least-recently written file. Then scale it up to a pool of servers.

Solution

  1. Phone Number / Dictionary - Given a phone number, consider all the words that could be made on a T9 keypad. Return all of those words that can be found in a dictionary of specific words.

This question is sometimes asked to college students and sometimes asked in phone screens. It isn't asked a lot in onsites.

Solution

  1. Sharpness Value - This question is usually phrased like "find the minimum value along all maximal paths". It's a dynamic programming question.

Occasionally asked in phone screens. Might be asked in onsites for new hires.

Solution

  1. Find Byte Pattern in a File - Determine whether a pattern of bytes occurs in a file. You need to understand the Rabin-Karp style rolling hash to do well.

Somewhat frequently asked in onsite interviews. Might be asked in phone screens.

Solution

  1. Count and Say - LeetCode. Follow up - what if it's a stream of characters?

Asked to college interns.

Solution

  1. Number of Islands / Number of Connected Components - Find the number of connected components in a grid. Leetcode

Mainly asked to college interns.

Solution

  1. Combination Sum / Bottles of Soda / Coin Change - Find all distinct combinations of soda bottles that add up to a target amount of soda. LeetCode

Mainly asked to IC1 candidates.

Solution

  1. Find Duplicate Files - Given the root of a folder tree, find all the duplicate files and return a list of the collections of duplicate files. LeetCode

Somewhat popular in phone screens. Less common in onsites.

Solution

aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022