A mini lib that implements several useful functions binding to PyTorch in C++.

Overview

Torch-gather

A mini library that implements several useful functions binding to PyTorch in C++.

What does gather do? Why do we need it?

When dealing with sequences, a common way of processing the variable lengths is padding them to the max length, which leads to quite a lot redundancies and waste on computing and memory as sequences length varies. So gather just removes their paddings and makes computation without waste of computation resource.

Install

python setup.py install

Docs

Note that all the input tensors should be on cuda device.

  • gather.gathercat(x_padded:torch.FloatTensor, lx:torch.IntTensor)

    Return a concatence of given padded tensor x_padded according to its lengths lx.

    Input:

    x_padded (torch.float): padded tensor of size (N, L, V), where L=max(lx).

    lx (torch.int): lengths of size (N, ).

    Return:

    x_gather (torch.float): the gathered tensor without paddings of size (lx[0]+lx[1]+...+lx[N-1], V)

    Example:

    >>> import torch
    >>> from gather import gathercat
    >>> lx = torch.randint(3, 20, (5, ), dtype=torch.int32, device='cuda')
    >>> x_padded = torch.randn((5, lx.max(), 64), device='cuda')
    >>> x_padded.size(), lx.size()
    (torch.Size([5, 19, 64]), torch.Size([5]))
    >>> x_gather = gathercat(x_padded, lx)
    >>> x_gather.size()
    torch.Size([81, 64])
    # another example, with V=1
    >>> x_padded = torch.tensor([[1., 2., 3.],[1.,2.,0.]], device='cuda').unsqueeze(2)
    >>> lx = torch.tensor([3,2], dtype=torch.int32, device='cuda')
    >>> x_padded
    tensor([[[1.],
            [2.],
            [3.]],
    
            [[1.],
            [2.],
            [0.]]], device='cuda:0')
    >>> lx
    tensor([3, 2], device='cuda:0', dtype=torch.int32)
    >>> gathercat(x_padded, lx)
    tensor([[1.],
            [2.],
            [3.],
            [1.],
            [2.]], device='cuda:0')

    This function is easy to implement with torch python functions like torch.cat(), however, gathercat() is customized for specified tasks, and more efficient.

  • gather.gathersum(xs:torch.FloatTensor, ys:torch.FloatTensor, lx:torch.IntTensor, ly:torch.IntTensor)

    Return a sequence-matched broadcast sum of given paired gathered tensor xs and ys. For a pair of sequences in xs and ys, say xs_i and ys_i, gathersum() broadcast them so that they can be added up. The broadcast step can be understood as (xs_i.unsqueeze(1)+ys_i.unsqueeze(2)).reshape(-1, V) with python and torch.

    Input:

    xs (torch.float): gathered tensor of size (ST, V), where ST=sum(lx).

    ys (torch.float): gathered tensor of size (SU, V), where SU=sum(ly).

    lx (torch.int): lengths of size (N, ). lx[i] denotes length of the $i_{th}$ sequence in xs.

    ly (torch.int): lengths of size (N, ). ly[i] denotes length of the $i_{th}$ sequence in ys.

    Return:

    gathered_sum (torch.float): the gathered sequence-match sum of size (lx[0]ly[0]+lx[1]ly[1]+...+lx[N-1]ly[N-1], V)

    Example:

    >>> import torch
    >>> from gather import gathersum
    >>> N, T, U, V = 5, 4, 4, 3
    >>> lx = torch.randint(1, T, (N, ), dtype=torch.int32, device='cuda')
    >>> ly = torch.randint(1, U, (N, ), dtype=torch.int32, device='cuda')
    >>> xs = torch.randn((lx.sum(), V), device='cuda')
    >>> ys = torch.randn((ly.sum(), V), device='cuda')
    >>> xs.size(), ys.size(), lx.size(), ly.size()
    (torch.Size([11, 3]), torch.Size([10, 3]), torch.Size([5]), torch.Size([5]))
    >>> gathered_sum = gathersum(xs, ys, lx, ly)
    >>> gathered_sum.size()
    torch.Size([20, 3])
    # let's see how the size 20 comes out
    >>> lx.tolist(), ly.tolist()
    ([2, 2, 1, 3, 3], [3, 1, 3, 1, 2])
    # still unclear? Uh, how about this?
    >>> (lx * ly).sum().item()
    20

    This function seems doing something weird. Please refer to the discussion page for a specific usage example.

Reference

  • PyTorch binding refers to the 1ytic/warp-rnnt

  • For the specific usage of these functions, please refer to this discussion.

Owner
maxwellzh
maxwellzh
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022