Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

Related tags

Deep LearningRBSRICNN
Overview

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network

An official PyTorch implementation of the RBSRICNN network as described in the paper RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network which is published in the Machine Learning and the Physical Sciences workshop at the 35th Conference on Neural Information Processing Systems (NeurIPS), 2021.

Visual examples:


Abstract

Modern digital cameras and smartphones mostly rely on image signal processing (ISP) pipelines to produce realistic colored RGB images. However, compared to DSLR cameras, low-quality images are usually obtained in many portable mobile devices with compact camera sensors due to their physical limitations. The low-quality images have multiple degradations i.e., sub-pixel shift due to camera motion, mosaick patterns due to camera color filter array, low-resolution due to smaller camera sensors, and the rest information are corrupted by the noise. Such degradations limit the performance of current Single Image Super-resolution (SISR) methods in recovering high-resolution (HR) image details from a single low-resolution (LR) image. In this work, we propose a Raw Burst Super-Resolution Iterative Convolutional Neural Network (RBSRICNN) that follows the burst photography pipeline as a whole by a forward (physical) model. The proposed Burst SR scheme solves the problem with classical image regularization, convex optimization, and deep learning techniques, compared to existing black-box data-driven methods. The proposed network produces the final output by an iterative refinement of the intermediate SR estimates. We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments that generalize robustly to real LR burst inputs with onl synthetic burst data available for training.

BibTeX

@InProceedings{Umer_2021_ML4PS,
               author = {Muhammad Umer, Rao and Micheloni, Christian},
               title = {RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network},
               booktitle = {Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS)},
               month = {December},
               year = {2021}
              }

Quick Test

Dependencies

  • Python 3.7 (version >= 3.0)
  • PyTorch >= 1.0 (CUDA version >= 8.0 if installing with CUDA.)
  • Python packages: pip install numpy opencv-python

Test models

  1. Clone this github repository as the following commands:
git clone https://github.com/RaoUmer/RBSRICNN
cd RBSRICNN
cd test_demo_code
  1. Place the Synthetic Raw LR Burst images in the ./test_demo_code/track1_val_set and ./test_demo_code/track1_test_set folders downloaded from the NTIRE21_BURSTSR.
  2. Place the Real Raw LR Burst images in the ./test_demo_code/track2_val_set and ./test_demo_code/track2_test_set folders downloaded from the NTIRE21_BURSTSR.
  3. Run the tests for the synthetic and real Burst SR by the following provided scripts.
python bsricnn_synsr_val.py
python bsricnn_synsr_test.py
python bsricnn_realsr_val.py
python bsricnn_realsr_test.py
  1. The SR results are into their corresponding ./test_demo_code/sr_results_track{1/2}_{val/test}_set folders.

RBSRICNN Architecture

Overall Representative diagram

Quantitative Results

The quantitative SR results (x4 upscale) are shown over the synthetic and real Burst SR testsets with the common evaluation metrics (PSNR/SSIM/LPIPS). The arrows indicate if high↑ or low↓ values are desired.

Visual Results

Visual comparison of our method with other state-of-the-art methods on the x4 super-resolution over the Raw Burst SR benchmarks. For visual comparison on the benchmarks, you can download our results from the Google Drive: RBSRICNN.

Acknowledgement

The training and testing codes are based on ISRResCNet, burst-photography, and NTIRE21_BURSTSR.

Owner
Rao Muhammad Umer
Computer Vision & Machine Learning Practitioner
Rao Muhammad Umer
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022